Crowdsourcing GUI Tests

Eelco Dolstra*, Raynor VliegendhartJf and Johan Pouwelse!
* Department of Software Technology, Delft University of Technology, Netherlands, e.dolstra@tudelft.nl
f Department of Mediamatics, Delft University of Technology, Netherlands, r.vliegendhart@tudelft.nl
1 Department of Software Technology, Delft University of Technology, Netherlands, j.a.pouwelse@tudelft.nl

Abstract—Graphical user interfaces are difficult to test:
automated tests are hard to create and maintain, while manual
tests are time-consuming, expensive and hard to integrate in
a continuous testing process. In this paper, we show that it is
possible to crowdsource GUI tests, that is, to outsource them to
individuals drawn from a very large pool of workers on the In-
ternet. This is made possible by instantiating virtual machines
running the system under test and letting testers access the
VMs through their web browsers, enabling semi-automated
continuous testing of GUIs and usability experiments with
large numbers of participants at low cost. Several large
experiments on the Amazon Mechanical Turk demonstrate that
our approach is technically feasible and sufficiently reliable.

I. INTRODUCTION

Testing of graphical user interfaces (GUISs) is a perennially
difficult problem. Ideally, developers test a GUI automati-
cally, just as any other part of a program; this allows a GUI
to be tested from a continuous build system, e.g., on every
commit. However, automated GUI testing approaches tend to
be brittle: test cases can easily break due to minor changes in
the GUI, leading to high test maintenance effort or bitrot in
the test suite. It is also difficult for a computer to determine
if the visual appearance of a program is “correct”.

Thus, GUI testing remains primarily a human task: flesh-
and-blood testers are required to execute test actions and
check the results. This is labour-intensive and expensive.
For instance, it is hard to expect developers to perform a in-
depth GUI test on every commit. And employing dedicated
testers is inelastic: it is hard to quickly scale the number of
testers up or down in response to changes in demand (e.g. to
continuously test a new experimental branch of the product).

In this paper, we show that it is possible to outsource
GUI testing to a very large pool of testers scattered all
over the world — that is, to crowdsource the problem [1].
Concretely, we have implemented a prototype implementa-
tion of this idea on Amazon’s Mechanical Turk (MTurk),
a crowdsourcing marketplace that allows requesters to sub-
mit Human Intelligence Tasks (HITs) to be performed by
workers against a fee. When workers accept a GUI testing
task through the MTurk web site, they are presented with a
web page that shows the display of a virtual machine (VM)
running the GUI under test and allows mouse and keyboard
interaction with the VM. The VM runs on a remove sever
and is instantiated automatically. The workers are asked

to execute a sequence of steps described in the task and
report the results. The interaction of the testers with the
virtual machines is captured by recording the displays of the
VMs, allowing developers to analyse and reproduce reported
problems in a much more straightforward manner than, say,
from a problem description in a bug report.

This approach has two primary applications, which we
explore in this paper:

o Semi-automated continuous testing: periodically, or ev-
ery time a developer commits a change to the source
of a project, a continuous build system builds the latest
revision of the project, then creates HITs in Mechanical
Turk to test the project.

o Usability studies: a HIT can ask workers to accom-
plish a goal, rather than perform a precisely described
sequence of steps. Developers can then draw qualitative
and quantitative conclusions about the usability of their
program by observing success rates and completion
times, and analysing recordings to discover interesting
interaction patterns. Conventionally, such experiments
are difficult because it is hard to find a sufficiently large
number of participants to allow statistically significant
conclusions to be drawn; crowdsourcing makes it much
easier to mobilise a large group of participants quickly.

There are two economic arguments to crowdsource GUI
tests. First, as with conventional outsourcing, testers often
come from lower-income regions and are thus likely to be
cheaper than local hires. (MTurk tasks are often as cheap
as $0.01 for a task that takes a few minutes to complete.)
Second, the labour pool is much more flexible: it is easy to
scale up or down the number of testers as conditions require.

To evaluate our approach, we have performed several
experiments involving 398 workers. To determine feasibility
of crowdsourcing for continuous testing, we used a number
of test subjects: KDE and Xfce, two desktop environments
for Unix, and Tribler, a peer-to-peer file-sharing program.
This evaluation sought to answer two principal questions:
1) Is crowdsourcing of GUI tests technically feasible? (For
instance, bandwidth or latency limitations of workers might
make it too hard to complete tasks in a reasonable amount
of time.) 2) Is the method sufficiently reliable? (E.g., if
the false negative rate is too high, bugs go undetected; if
the false positive rate is too high, developers will waste

time investigating non-existent problems.) Our experiments
suggest that both are the case, though further work on HIT
design is desirable to improve reliability.

To see whether crowdsourcing is useful for usability
studies, we ran A/B tests of variants of Tribler to deter-
mine whether an experimental user interface feature had
a measurable effect on user efficiency. This demonstrates
that crowdsourcing is a cheap and effective method to run
usability experiments involving hundreds of participants.

The structure of this paper is as follows. We first describe
the background of our work (Section II). We then give
a high-level overview of the method (Section III), discuss
technical aspects of our prototype system (Section IV) and
present the results of our experimental evaluation (Sec-
tion V). Finally, we discuss threats to validity and directions
for future work (Section VI).

II. BACKGROUND AND RELATED WORK
A. GUI testing

Graphical user interfaces are an important part of many
software systems, such as desktop or mobile phone appli-
cations. Almost by definition, the GUI is the most visible
part of an application to end users. Thus, developing and
testing the GUI takes up a significant part of the development
effort — as much as 50-60% [2]. However, testing of GUI
is a difficult problem because it is hard to automate. As
with most other forms of testing, automating GUI tests is
desirable because it gives developers confidence that the
changes they make do not break functionality (e.g., by hav-
ing a continuous build system running a test suite on every
commit to a project’s source code repository). Unfortunately,
it is difficult to create a test case for some GUI functionality
because it is hard to specify in a convenient way, on the one
hand, the required input (e.g., mouse clicks or keystrokes),
and on the other hand, the expected output (e.g., the desired
appearance of the application window during or at the end
of the test case).

Research on automating GUI testing is a somewhat ne-
glected subject [3], [2]. Automated testing approaches range
from low-level, capture/replay methods to high-level, model-
driven approaches. In the former, a testing tool records the
keyboard and mouse events from a sample session performed
by a developer. These events can then be replayed to test
the GUI. However, the downside of this approach is that
it is very sensitive to changes to the GUI: in the most
simplistic case, where one records (say) mouse clicks using
their absolute screen coordinates, a minor rearrangement of
GUI elements can cause the test to fail. Using the identity of
the logical GUI element that received the event makes the
test less brittle, but does not work if the absolute position
is significant. Model-driven approaches (see e.g. [4], [5])
use white-box knowledge of the internal structure of the
GUI to generate test cases. Model-driven tools tend to be
specific to a programming language and GUI framework.

More importantly, all these approaches have a test oracle
problem: how do they decide that the visual appearance of
the GUI is correct? Doing a pixel-precise comparison of
the screen or window against a reference output is clearly
fragile. (The “pass” criterion for GUI tests is therefore often
simply that the application under test did not crash.)

There are also semi-automated methods; e.g., White and
Almezen [3] propose a method that uses a finite-state model
of the GUI to generate test cases to be performed by a
human tester. In their evaluation, they distinguish between
defects (deviations from the specification) and surprises (a
departure from “expected” behaviour, as seen by the user).
Clearly, the latter are hard to identify using a (non-Al)
automated process; as Meyers noted, “Automated testing
tools are rarely useful for [current GUIs], since they have
difficulty pretending to be users” [6].

Thus, GUI testing remains for a large part a human
activity: human testers (either the developers or dedicated
quality assurance staff) manually use the GUI and check
the results, on an ad hoc basis or by following a test plan.
But as we noted above, this is expensive and inflexible in
responding to changes in demand.

B. Crowdsourcing

Because of this, we explore a different approach: namely,
to crowdsource the problem. “Crowdsourcing” is the act of
outsourcing a task to individuals recruited from a large pool
of available workers on the Internet with whom one has no
direct relationship [1]. As an early example, the Distributed
Proofreaders website' of Project Gutenberg asks volunteers
to proofread and correct automated scans of books for mis-
takes in the OCR process. Tasks vary wildly, ranging from
large tasks such as website design (e.g., crowdSPRING?)
to microtasks such as classifying images. Tasks are often
performed in exchange for a fee; for small tasks, this can be
a “micropayment” of a few cents per task. Crowdsourcing
participants can have many motivations for participating in
a task, such as making money, for fun, to kill time, and so
on [7].

The main attraction of crowdsourcing for task creators
is the low cost and flexibility in recruiting participants.
Crucially, crowdsourcing is elastic: increasing or decreasing
the number of tasks in response to changing demand or
conditions is much simpler than if one had to hire or fire
employees.

C. Amazon Mechanical Turk

The best-known example of a crowdsourcing marketplace
— i.e., a website where task creators and task performers
can meet — is Amazon Mechanical Turk® (MTurk), created
by Amazon.com in 2005. The name originates from an

Uhttp://www.pgdp.net/
Zhttp://www.crowdspring.com/
3http://www.mturk.com/

18th-century chess-playing “machine” that in reality con-
tained a hidden person to decide chess moves; analogously,
MTurk allows one to submit tasks and get results back
as if they were performed automatically (as Amazon puts
it, “artificial artificial intelligence”). These tasks are called
Human Intelligence Tasks (HITs); the submitters of HITSs
are called requesters, while individuals who perform tasks
are workers (colloquially known as Turkers). Typical tasks
include classifying web pages or images (e.g. to screen for
offensive content), transcribing audio fragments, translating
text fragments, searching for company websites on Google
to determine search engine presence, and, unfortunately,
engaging in various forms of spam [8]. The reward for most
of these tasks is a few US dollar cents. Amazon claims that
as of early 2011, there were 500,000 registered workers in
over 190 countries®.

The MTurk workflow is as follows. Requesters create a
HIT by writing a task description and a summary, and add
keywords to allow workers to find it easily. The requester
also sets the desired number of assignments, which is the
number of workers that should perform the HIT, and the
monetary reward per assignment. The requester submits
the HIT to MTurk, receiving a HIT ID. The HIT then
becomes visible on the MTurk website to workers who
view or search the list of available HITs. Workers can
preview the HIT; if they like the HIT, then can accept it,
at which time an assignment is instantiated with a unique
assignment ID. The task description in a HIT can be an
arbitrary HTML page presented to the worker as an iframe
within the MTurk website; apart from a description of the
steps to be performed by the worker, it typically contains
some form fields to allow the worker to enter results. After
completing the task and clicking on the submit button, the
worker’s answers are stored by Amazon and can be viewed
or downloaded by the requester. The requester can then
approve or reject an assignment; in the former case, the
worker is payed the HIT’s reward. If workers do not com-
plete an assignment within a time limit, the assignment is
considered abandoned; workers can also return an accepted
HIT manually. MTurk provides a web service API to create
HITs and fetch assignment results programmatically.

There have been a substantial number of publications on
using MTurk in research. For instance, MTurk has been used
to create training data for machine translation systems [9],
[10], the results being comparable to those obtained from
professional translators but more than an order of magnitude
cheaper; to train automatic speech recognition systems [11],
where it was found that the ability to easily gather more
data compensates for decreased data quality; and in social
science and psychological experiments [12], [13], where the
use of MTurk helps to recruit more participants than would
otherwise be feasible, and the wider demographic range of

“https://forums.aws.amazon.com/thread.jspa?thread|D=58891

workers reduces the typical selection bias caused by using
only university students in such experiments.

More directly relevant to the present work is that MTurk
is used for web site UI testing. This is technically straight-
forward, since workers by definition already have a web
browser; thus a HIT for testing the usability or functionality
of a web site simply provides the worker with a hyperlink to
the website to be tested. Going further, TryMyUI’ provides
usability testing to its customers by recording both the screen
of workers, showing them interacting with the website, and
the worker’s microphone, allowing them to comment on the
website. TryMyUI recruits testers on MTurk; however, the
screen and audio recording requires workers to run a special
Java applet.

III. OVERVIEW

This section gives a high-level overview of our MTurk-
based GUI testing approach. The main technical goal is to
allow MTurk workers to start testing GUIs with as little
overhead as possible. Thus, the installation of specialised
software on the worker’s machine (such as the system under
test) should not be necessary: everything should run in
the worker’s browser. We accomplish this by automatically
instantiating virtual machines running the system under
test on a server. The workers then connect to the display,
keyboard and mouse of the virtual machine through a Flash
application included in the HIT.

A schematic depiction of the process of creating a GUI
testing HIT, performing the HIT assignments and processing
the results, is shown in Figure 1. The steps in this process
referenced in the figure are as follows:

(1) The developer writes a task description that lists the steps

to be performed by workers. This description is an XML
file listing steps consisting of an action to be performed
and a question to be answered by the worker. Questions
can have several types, such as Boolean (yes/no) or
textual (e.g. to ask an open question). It also specifies
metadata such as the reward for the task.
Figure 2 shows a (somewhat abbreviated) task descrip-
tion for testing Tribler®, a completely decentralised peer-
to-peer file-sharing application [14]. The test described
by this task tests Tribler’s most significant functionality,
namely, the ability to search for and download files and
to find and browse “channels” (a mechanism for users
to publish collections of files). Because Tribler has an
optional “family filter” that removes potentially offensive
results from search results, the task also asks workers
to look at the “network buzz” search terms and report
any offensive words they see. The latter is, of course, a
highly subjective task that could not be performed by a
computer.

Shttp://www.trymyui.com/
Ohttp://www.tribler.org/

Developer |-

VM server

HIT monitor
Result DB

Web server

Amazon
MTurk server

Assignment
results

Figure 1. Overview of GUI testing on MTurk

Note that in the task description, if a step does not
specify a question, the default Boolean question “Did
you succeed?” is used. Actions may be omitted if the
question just requires the worker to visually inspect the
display. The onFailGoTo attribute is used to cause a
failing step (i.e. one answered with “no”) to skip to the
indicated step. For instance, if searching for “Ubuntu”
fails to return results, then the steps asking the worker
to download Ubuntu will be skipped.

The developer also writes a virtual machine specifica-
tion, that describes how to build a virtual machine con-
taining the necessary software automatically and repro-
ducibly. (This is discussed in more detail in Section IV.)
For instance, for the Tribler task, the VM specification
states that the virtual machine should run the Xfce
desktop environment (to provide a window manager,
necessary in a Unix-based GUI environment), contain
the Tribler client and start Tribler automatically when
the VM boots.

The VM specification can provide an acceptance check,
a script run after the worker finishes the task. Its purpose
is to do a basic sanity check to verify that the worker
did indeed complete the task correctly. This allows some
suspicious assignments to be flagged automatically; e.g.,
if the acceptance check fails but the worker says that all
steps succeeded, this may indicate cheating. For Tribler,
the acceptance check verifies that a file has appeared in

<task description="Basic Tribler download test"
reward="0.15" assignments="10">
<steps>
<step onFailGoTo="end">
<question>Do you see a window named
"Tribler"?</question>
</step>
<step onFailGoTo="channels">
<action>In the search box, type Ubuntu and
press enter. Wait a few seconds.</action>
<question>Do results appear?</question>
</step>
<step onFailGoTo="channels">
<action>Click on the Download button next to
the top result. This should start the
download.</action>
</step>
<step onFailGoTo="channels">
<action>Click on the Library button at the top.
This should show the download in progress.
</action>

<question>Is the download in progress?</question>

</step>

<step id="channels" onFailGoTo="offensive-words">

<action>Click on the Channels button at the
top.</action>

<question>Does a list of "Popular Channels"
appear?</question>

</step>

<step id="offensive-words">
<question type="text">Click on the Home button
at the top. If you see any offensive words
appearing in the box at the bottom of the
window, then please list some of them here.
</question>
</step>
</steps>
</task>

Figure 2. Task description of a Tribler GUI test

Tribler’s download directory, indicating that the worker
completed the download step correctly.
(® From the task description and the VM specification,
virtual machines are instantiated on the VM server, and
a HIT is created in MTurk (using the MTurk API). The
HIT is shown on the MTurk worker website.
(@ When a worker accepts a GUI testing hit in his web
browser, a web page appears showing a virtual machine
and the first step to be performed (along with some
general instructions). Mouse movements, clicks and key
presses (when the Flash control has focus) are sent to the
virtual machine. Answering a question causes the next
step to appear. Figure 3 shows an example of a HIT
containing a running VM. The virtual machine instance
is unique to this particular worker; each worker gets
his own VM instance, and thus cannot interfere with
other workers. The VM server starts recording the screen
of the VM as soon as the worker connects, and stops
recording when the worker disconnects. The server also
logs keyboard and mouse events.
(5 When the worker clicks the submit button, the answers

Test a Graphical User Interface

The goal of this task is to perform a list of actions to test software. Below you see the display of a
computer running some software. The task is to perform the following steps precisely and report

they If you don’t d in any step, report what went wrong in the form at the
bottom.

Virtual machine display

Tribler 5.4.3

tome |[TResuits | channels | settings | Library |
Search Files or Channels
[Ubuntu 2 Download started

[Qsearch within resuits | @

Popularity

Got 16 results for "ubuntu”
Search completed Name

b ubunhtu-11.04-alternate-i386.is0 o
Family Filter is On Similarly numbered items (4)
turn off b ubuntu-11.08-server-386.iso
b ubuntu-11.04-dvd-i386.is0
b ubuntu-11.04-desktop-i386.iso
Bundiing by Magic » ubuntu-11.08-oem-1386.iso
Bundle by Magic

Name b ubuntu-11.04-alternate-amd6d.iso 700 MB EEEEEET—I Download

Numbers #
Size
oft

similarly numbered items (3):
b ubuntu-11.04-server-amd6a4.iso
b ubuntu-11.04-dvd-amd6d.iso

Associated Channels P ubuntu-11.04-desktop-amd64.iso

b ubuntu-10.04.3-desktop-i386.is0 688 MB
Similarly numbered items (2)
b ubuntu-10.04.3-server-i386.is0
P ubuntu-10.04.3-alternate-1386.isc

EZmT 1 Download

b ubuntu-10.10-dvd-i386.iso 4157 MB EXmEET—1 Download
Similarly numbered items (3): =
Additionally, got 8 channels for "ubuntu” Gigard (i
e % P @ @ Tibler5.43 B 1735 |
Cannected Disconnect D
Step 3/ 8: Click on the Download button next to the top result. This should start the
download.

Did you succeed? OYes CNo

Figure 3. A Tribler GUI testing HIT as it appears in a worker’s web
browser, at step 3 of the task

to each step are sent to MTurk.

(6 The VM server periodically fetches assignment results
from MTurk. When a worker’s assignment result is
received, the acceptance check script is run inside the
worker’s VM, and the VM is terminated.

(8 Developers can view the results of the HIT on a website
served by the VM server. This site allows developers to
browse HITs and submitted assignments. Figure 4 shows
an example of an assignment result page. In this example
taken from an actual HIT’, the worker reported that he
or she was unable to start the download initially. The
recording of the VM’s display, which can be played
back by clicking on the “Video” link, allowed the
Tribler developers to see the problem immediately: after
clicking on “Download”, Tribler asynchronously fetches
the corresponding Torrent file; under some conditions,
however, it would not actually start the download after
obtaining this file.

HITs can be created on an ad hoc basis, e.g., for usability
testing experiments. However, most HITs are created auto-
matically from a continuous build system. For instance, for
every commit in Tribler’s version control system, the task
in Figure 2 is instantiated with the latest checkout.

Our prototype system considers a GUI test HIT to pass if

7http:/nixos.org/mturk/job/6

Assighnment 2Z0PJWKUDD8XMB43GFQOF6UT

Info

Test result: ¥ Failed (2 out of 7 steps failed)

Acceptance check: « Passed (log)

Status: " Approved
Worker ID: (redacted)
Location: Vaniyambadi, Tamil Nadu, India

Accepted at: 2011-08-29 09:56:42

Submitted at: 2011-08-29 10:03:10
Duration: 388s
Recordings: Video #1 (379.0 s, 14.73 MiB)
Answers
Question ID
step1 yes
step2 yes
step3 yes
step4 no
step5 no
step6 yes
step7 yes

offensive_words ubuntu server black swan alternate

comments The download process didn't start it still remains wait state

Figure 4. An assignment result page, showing a failing test

at least 60% of all assignments indicated no problems (that
is, answered “yes” to all questions) and passed the automatic
acceptance check. It is considered to fail if at least 60% of
all assignments indicate a problem (i.e., answered “no” to
at least one question). Otherwise, the result is inconclusive.
The result is often useful and revealing to developers in any
of these cases, since even a passing or inconclusive test can
show interesting interaction patterns.

IV. IMPLEMENTATION

We now describe several significant technical aspects of
our prototype system.

A. Building VMs

To specify and instantiate VMs, we applied our previous
work on automating system tests [15]. There, we used
declarative models such as the one shown in Figure 5
(explained below) to build virtual machines, or virtual
networks of virtual machines, in which to run automated
system tests. Such specifications consist of a description
of the desired configuration of each machine, along with
an imperative script that runs test actions on the machines.
This approach builds on NixOS [16], a Linux distribution
based on the purely functional Nix package manager [17], to
ensure that VMs can be instantiated efficiently (i.e., without
building large disk images), an important property for use in

continuous build systems. Here, instead of doing automated
tests, we use this method to prepare virtual machines for
interactive tests.

Figure 5 shows the specification of the virtual machine
used by the Tribler GUI test in Figure 2. This is a function
that takes as an argument the path to the source code of
Tribler (at point (1)). This enables it to be called from
a continuous build system with the latest revision as an
argument to build the corresponding VM and HIT. The
function returns a call to makeMTurkTest (at (2)) that causes
the Nix package manager to build a script that starts the
virtual machine. All dependencies of this script — e.g., the
Linux kernel, the X11 window server, the Xfce desktop
environment and Tribler — are built as well if necessary.
(Nix can be thought of as a high-level, purely functional
Make that works at the level of packages.)

The attribute machine (at (3)) defines the configuration
of the virtual machine. For instance, it states that the VM
should have 1 GiB of disk space and 1 GiB of RAM. For
convenience, it is possible to factor out commonality in
VM configurations into separate modules: thus, the Tribler
configuration imports (at (5)) several modules that create
a normal user account (named alice), set up the Xfce
desktop environment, and so on. The VM also includes a
Tribler package built from source code at @). (The function
mkDerivation builds packages from source.)

A Perl script to bring the VM into the desired state for
the GUI test is defined in the attribute prepareVM (at (s)).
After implicitly starting the VM, it executes actions such
as waiting until the Xfce desktop environment has finished
booting (as indicated by the appearance of the xfce4-panel
window), starting Tribler, and sleeping for a while to allow
Tribler to connect to peers on the Internet so that the Torrent
search facility works.

Likewise, the attribute acceptanceCheck (at (7)) defines
a script that checks whether the worker performed the
test successfully. (If it is omitted, assignment results are
unconditionally accepted.) Here, it tests whether a file has
appeared in the TriblerDownloads directory. This indicates
that Tribler has started to download at least one file.

B. Running VMs

For each HIT, the VM server pre-starts a pool of virtual
machines. It is necessary to start VMs in advance to ensure
that when a worker connects, he can access a VM immedi-
ately, rather than having to wait for a new VM to boot.

Virtual machines are executed using QEMU/KVMS?, a
virtualisation system for Linux. We enabled KVM’s same-
page merging feature, a memory deduplication method that
allows identical memory pages in different VMs to be
merged into a single page in the host’s physical RAM [18].
Since the VMs in a pool are nearly identical, this allows

8http://www.linux-kvm.org/

{ triblerSrc }: (D

makeMTurkTest { @

machine = @
{ config, pkgs, ... }:
let tribler = stdenv.mkDerivation
{ ... src = triblerSrc; }i @

in
{ require = ®
[<nixos/tests/common/user—account.nix>
./common.nix ./common-xfce.nix];
environment.systemPackages = [tribler];
virtualisation.memorySize = 1024;
virtualisation.diskSize = 1024;

bi

prepareVM = '’ (®
Wait for the Xfce desktop to start.
Smachine—waitForWindow (qr/xfced-panel/) ;

Start Tribler, wait for it to appear.

Smachine—execute ("su - alice -c
"DISPLAY=:0.0 tribler &'");

Smachine—waitForWindow (qr/Tribler/) ;

Wait for Tribler to gather some buzz.

Smachine—sleep (120);

rro.
’

acceptanceCheck = '/ @
Smachine—succeed (' [-n "$(find
/home/alice/Desktop/TriblerDownloads
-maxdepth 1 —-type £)" 17);

Figure 5. Virtual machine specification for the Tribler task

significantly more VMs to run on a host. For instance, during
the second A/B test described in Section V, it cut memory
consumption for a pool of 20-25 VMs from about 6.6 GiB
to 3.6 GiB.

C. Accessing VMs

The HTML page containing the HIT contains a Flash
control to allow access to the virtual machine. This is
a modified version of Flashlight-VNC®, an open source
Flash-based client for the VNC remote desktop protocol.
QEMU/KVM provides a built-in VNC server to allow clients
to access the VM remotely. However, instead of having
the client connect directly to the VNC server of a QEMU
instance, the client connects to a VNC multiplexer that
selects the correct VM instance for the client, then proxies
the connection onward to the VNC server of the selected VM
instance. Thus, we modified the VNC client to send as part
of the protocol handshake its current HIT and assignment
IDs. (MTurk passes these as query parameters to the HIT’s
HTML page, where they can be accessed using JavaScript.)

9http://sourceforge.net/projects/flashlight-vnc/

The first time that a worker connects with a given
(hitld, assignmentld) tuple, the VNC multiplexer picks a
VM from the associated HIT’s pool of unused VMs. At this
time, a new VM is started to maintain the size of the pool
of unused VMs. The selected VM is thereafter considered in
use and is persistently associated with that assignment. Thus,
if the worker connects again with the same tuple (e.g., after
restarting his browser), the same VM will be selected.

The VNC multiplexer is also responsible for recording
the session. For this reason it starts flvrec'?, a utility that
connects to a VNC server and records its screen to Flash
Video format. To record the worker’s keyboard and mouse
actions, we added instrumentation to QEMU/KVM to log
these events to a file.

We also log when the worker selects an answer to a
question (i.e., clicks on the Yes or No radio buttons in
Figure 3). This is useful because it allows viewers to jump
directly to the point in the recording corresponding with
a step in the task. Since selecting an answer is done in the
worker’s web browser, we added some JavaScript to the HIT
pages to pass on associated timestamps through a hidden
form field. Since the clocks of workers may be wildly off,
in order to be able to match these timestamps to the video
recordings, we need to know the clock difference between
the worker’s machine and the VM server. For this reason,
our modified VNC viewer sends the client’s current time to
the server, allowing the server to compute the delta.

To obtain the results of submitted assignments, the VM
server periodically polls MTurk. When an assignment result
is received, the associated VM’s acceptance check is exe-
cuted, and the VM is terminated. When the target number
of assignments for a HIT has been submitted (e.g., 10 for
the Tribler test in Figure 2), all VMs associated with the
HIT are terminated. This includes unused VMs and VMs
associated with abandoned assignments.

V. EVALUATION

We have performed a number of experiments to determine
the feasibility of crowdsourcing of GUI tests. Specifically,
we set out to answer the following questions:

RQ1 Are workers technically capable of performing the
tasks? For instance, if most potential workers have
very slow Internet connections, or if the latency is
very high, this may make it impossible in practice to
crowdsource GUI tests.

RQ2 Is crowdsourcing a feasible approach for continuous
testing? This requires that sufficiently many workers
correctly determine whether a test passes or fails.

RQ3 How long do crowdsourced GUI tests take, i.e., what
is the average runtime of a HIT?

RQ4 Is crowdsourcing a feasible approach for usability
studies?

10http://www.unixuser.org/~euske/python/vnc2flv/

Median

Country Workers Assign- speed Mean ping
ments (KiB/s) (ms)
India 247 490 33.7 329
United States 42 49 200.3 202
United Kingdom 11 28 535.1 52
Pakistan 8 9 24.6 299
Romania 7 14 468.0 25
(27 countries omitted)
Total { 398 [700 | 48.0 | 260
Table I

WORKER DISTRIBUTION BY COUNTRY

RQ5 How do we design a HIT so that HIT execution time
is minimised?
We do not directly evaluate economic usefulness (i.e.,
whether crowdsourcing is actually cheaper than conventional
testing); we do touch on this in the next section.

A. Experimental setup

All experiments (i.e., all virtual machines) were run on a
single Dell PowerEdge R815 machine with 4 12-core AMD
6164 HE CPUs and 96 GiB of RAM. This server is located
in the Netherlands, which is, as we shall see, far from the
majority of workers, thus affecting latency negatively.

The workers who participated in our HITs were self-
selected; we had no control over which workers accepted a
HIT. The Mechanical Turk allows requesters to require that
workers meet certain qualifications, such as geographical
location, a minimum acceptance rate for past assignments, or
passing a qualification HIT (a HIT that has to be performed
before the worker can do other HITs). In order not to
introduce any bias into the set of workers, we did not require
qualifications from workers.

B. Worker demographics

In our experiments, we gathered various bits of informa-
tion about workers that are relevant to HIT design and tech-
nical and economic feasibility. These include information
about the location of the workers, their network bandwidth
and latency, and their display resolutions.

In the evaluation below, we ran 51 HITs on the MTurk.
In total, 398 unique workers from 32 different countries
submitted 700 assignments. Table I shows the top 5 worker
countries, along with the median download speed and aver-
age ping time between the worker and the VM server. To
estimate a worker’s download speed, we instrumented our
HITs with some JavaScript to have the worker’s browser
fetch a file from the VM server. Ping time was determined
by having the VNC multiplexer perform a ping to the client
when it connects.

As the table reveals, the vast majority of workers come
from India. This is unsurprising, since India is the only coun-
try besides the U.S. where Amazon pays workers directly;
in all other countries, workers receive Amazon store credits.

Connection speeds of Indian workers are fairly low. This has
an effect on task completion time, as we shall see below, but
not a fatal one. Some workers complained that access to the
VM was slow, but in most cases did manage to complete
the task. (Our HIT summary did advice workers that a
“reasonably” fast Internet connection was recommended.)

Addressing RQS5, we also instrumented HITs to log the
screen resolution of workers. This is a particularly important
data point, because a good work flow is only possible
if the VM display and the current step in the task are
simultaneously visible (as in Figure 3). If the VM screen
is too large, workers will have to scroll or pan frequently,
significantly increasing the task completion time. We found
that the most common resolutions are fairly low: 25.3% of
workers have a 1024x768 screen, 20.7% have 1366x768 and
11.8% have 1280x800. We initially used a VM resolution
of 1024x768, but as a result of this analysis, we lowered
the resolution to 800x600 (for most HITs) and 640x480 (for
some HITs).

C. Continuous testing

To address RQ1 and RQ2, we created a number of GUI
testing task descriptions and attached them to a continu-
ous build system. That is, HITs were instantiated when
developers committed changes, subject to a minimum time
interval between HITs. For almost all HITs, we requested
10 assignments to be submitted. The tests are the following:

o Tribler test: the test shown in Figures 2 and 5. Tribler is
written in Python and uses the wxPython GUI toolkit.
The HIT is built from Tribler’s Subversion repository.

o KDE login/logout test: KDE is a desktop environment
for Unix. The VM preparation script boots KDM, the
KDE login manager. The test asks workers to login,
start the Konqueror web browser and visit a given URL,
then logout. KDE is written in C++ and uses the Qt GUI
toolkit. This and the remaining tests are built from the
repository of the NixOS Linux distribution; thus they
are continuous system tests of NixOS, rather than KDE.

o KDE USB stick mounting test: The preparation script
provides a logged-in KDE session. The test is to open
the Dolphin file manager, click on a USB stick to mount
it, copy a file from the USB stick, unmount the USB
stick, and open the copied file. (This test uses QEMU’s
ability to virtualise USB hardware; the “USB stick” is
a disk image passed to QEMU.) This is a good system
test because the ability to mount external devices in
KDE depends on many system and desktop components
working in concert (e.g., udev, udisks, PolicyKit, and
ConsoleKit).

e Xfce editor test: Xfce is another desktop environment
for Unix. The test is to create a file in Mousepad,
the Xfce editor application, save it, then reopen it in
Thunar, the Xfce file manager. Xfce is written in C
and uses the GTK+ toolkit.

l Tribler ~ KDE login ~ KDE mount Xfce
Reward $0.15 $0.10 $0.10 $0.10
Hits 14 10 11 10
Average runtime 2.0h 3.6h 2.0h 2.1h
Submitted 145 100 115 100
Abandoned 9 9 11 7
Workers 112 86 94 85
Median duration 314.0 s 3275 s 240.0 s 246.5 s
Hourly rate $1.72 $1.10 $1.50 $1.46
% Correct 66.9% 77.0% 68.7% 82.0%
% Tech. issues 5.5% 6.0% 5.2% 3.0%
% Misunderstood 2.1% 6.0% 13.9% 2.0%
% Fraud 3.4% 4.0% 2.6% 7.0%

Table II

RESULTS OF THE CONTINUOUS TESTING HITS

Table II summarises the results of the HITs instantiated
from these tests!!. For each test, we list the reward per
assignment; the number of HITs created; the average runtime
of the HITs, that is, the time between creation of the
HIT and submission of the last assignment; the number of
assignments submitted or abandoned; the median duration
of assignments, that is, the time between HIT acceptance
and result submission; the effective hourly rate paid to the
median worker; the percentage of submissions that correctly
classified the HIT as pass or fail, as appropriate; and the
number of assignments where the worker reported running
into technical issues (e.g., the VNC Flash control gave an
error), where the worker misunderstood the task, and where
the worker submitted a fraudulent result (e.g., clicked “yes”
on all steps, while the recording shows no activity). This
classification was done manually by viewing the assignment
recordings.

We manually injected faults into the systems under test in
some HITs. For instance, for the KDE USB mounting test,
we created a HIT with a broken PolicyKit configuration,
preventing users from mounting external devices.

Gratifyingly, some reported failures were the results of
actual bugs introduced (unwittingly) by NixOS developers.
For instance, in one case'?, an upgrade from GTK+ 2.24.5
to 2.24.6 caused a regression in the Xfce editor: the Save
as dialog box was suddenly much larger, causing the Save
button to fall off the screen. Some workers worked around
this issue by moving the window and reported no error;
others flagged failure and reported in the comment field
that there was no Save button'3. Note that this kind of bug
might not be found by many automated testing frameworks,

Detailed results of these HITs, including all video recordings, are
available at http://nixos.org/mturk.

2http://nixos.org/mturk/job/28

3Because of this, it is sometimes hard to classify assignment results.
Therefore we allowed both fail and pass results if they were properly
demonstrated; e.g., a pass is only correct if the recording shows the user
working around the dialog box problem.

10

Time until submission (h)

-

ol —T— — — i

Tribler KDE login ~ KDE mount Xfce All

Figure 6. Box plots showing the distribution of assignment submission
times relative to the creation time of the HIT

because the dialog responds fine to simulated abstract events.
(This probably counts as a “surprise” in the sense of [3].)

As Table II shows, the number of incorrect assignment
results is fairly high (though at 10 assignments per HIT,
the correct results generally outvote the incorrect ones). We
analysed the assignments to see why this was the case.
One important cause is that workers are often sloppy in
performing steps precisely: for instance, in the Xfce test,
users are asked to create a file named test.ixt; however, many
workers used a different file name (e.g., bla.txt), causing the
acceptance check to fail. For the Tribler test, an interesting
cause is visual lag: many workers reported that the third
step (clicking on “Download”) did nothing. This is likely
because the briefly flashing “Download started” message is
not seen on slow connections.

We measured how long it takes for results to come in
(RQ3). The box plots in Figure 6 show, for each of the
continuous tests and all together, how long after the creation
of the HIT assignments were submitted. (The boxes denote
the upper and lower quartile; the line in each box is the
median; and the whiskers denote the extremes.) This shows
that most submissions come in quickly, but the outliers cause
some HITs to take several hours to complete.

D. Usability testing

To discover whether crowdsourcing is a feasible method
for GUI usability experiments (RQ4), we ran two A/B
tests [19] to compare user performance between different
variants of Tribler. Specifically, we were interested in evalu-
ating the usefulness of an experimental Tribler feature called
bundling, which groups related search results together on
the basis of a number of criteria, such as filename or size.
For instance, episodes of a television series may be grouped
together. Thus, the main A/B experiment is to create a HIT
in which half the users get a Tribler instance with bundling
disabled, and the other half get one with bundling enabled.
This is implemented by filling the VM pool for a HIT with
two kinds of VMs (which can be arbitrarily different). A
worker is thus randomly assigned either the A or B variant

by the VNC multiplexer. The goal of the experiment is to
establish whether there is a statistically significant difference
in the average time between a user initiating a search, and
pressing the download button on the appropriate search
result. That is, the null hypothesis Hy is that uqs = up
(where p is the mean time interval), while the alternative
hypothesis H; is that pa < pp.

However, we worried about the main threat to the validity
of results from a crowdsourced experiment: the large vari-
ance in worker connection latency and bandwidth (as seen
above), which in turn can cause a large variance in assign-
ment completion times. Thus, to evaluate the experimental
method itself, we first performed an A/B test between the
non-bundling variant, and the non-bundling variant with an
artificial delay of 2 seconds in the presentation of search
results to the user. We then expected to observe a difference
in the average time interval (ideally, +2 seconds).

We instrumented Tribler to log search and download
actions, and created a HIT that asked users to enter a variety
of search terms and find a specific file in the resulting list.
The HIT requested workers to perform the task without
interruptions. We ran the HIT with 100 assignments (and
thus 100 workers), which took 28 h 58 m to complete. With
a reward of $0.25 per assignment, this experiment cost $25.
This yielded 354 measurements for the A (non-bundling)
variant and 330 for the B (delayed) variant. The median
interval was 19.6 s for A and 21.7 s for B, neatly conforming
to the 2 second delay in B. The arithmetic means, however,
were 30.8 s versus 28.9 s, mostly because the A set had a few
extreme outliers. The trimmed means obtained by discarding
the 10% highest measurements were 21.3 s versus 22.2 s.
Discarding the 25% highest measurements to account for
the skew in the distribution, Student’s t-test rejects Hy at
P =0.049, a significant result.

With the same setup, we performed an A/B test comparing
the non-bundling and bundling variants. This HIT took 28 h
48 m to complete and yielded 332 measurements for the non-
bundling variant and 269 for the bundling variant. Here there
was no clear difference between the variants: the trimmed
means were 19.9 s and 21.4 s, and the medians 18.3 s and
19.2 s, respectively. The null hypothesis was not rejected at
P = 0.494. Thus the experiment suggests that that bundling
does not lead to faster search result interpretation by users.

Returning to RQ1, Figure 7 shows the relationship be-
tween a worker’s bandwidth and the median search time for
the queries performed by each worker during the A/B tests.
This suggests that faster connections do reduce task comple-
tion time, but the effect is fairly modest; slow connections
are no major impediment.

VI. DISCUSSION
A. Threats to validity

A threat to internal validity is that our evaluation was
conducted over a limited amount of time (around a month):

60 T T
g 407 .
5 |
2 fr
5 20 . . 4
g AR X
= 2,
0 1 1
0 200 400 600
Bandwidth (KiB/s)
Figure 7. Worker bandwidth vs. median search time in the Tribler A/B

tests, with best-fit linear regression line

it is possible, for instance, that workers performed our HITs
because of their novelty and may lose interest over time.
This could cause the HIT’s runtime to go up in the future.

There are a number of threats to external validity — the
extent to which our results can be generalised to other sit-
uations. The most important is that crowdsourcing assumes
that there is a sufficiently large pool of people motivated
and able to work on the task. If the motivation is financial,
the crowdsourcing “business model” depends in part on
the existence of countries with low per-capita GDP, good
Internet connectivity, and a large population that understands
the language of the task. If these are not available, then
crowdsourcing may not work, or may be more expensive
than shown here. In the latter case, crowdsourcing is still
useful for its elasticity (the ability to quickly attract more
workers).

Second, for usability tests, we assume that the worker
possesses the requisite knowledge to work with the applica-
tion. This is the case for applications that target a general
audience, such as Tribler, but may not hold for specialised
applications. For instance, we cannot use arbitrary workers
in a usability study of an Eclipse plugin. A qualification
HIT could address this, but there simply may not be enough
skilled and interested workers on MTurk.

Third, the task formalism assumes that tasks can easily
be described in words (e.g., “click on button Y”). For some
types of interaction, this may be insufficient. Consider a
drawing program where we want the worker to draw and
manipulate shapes in a certain way; it may be too difficult
to convey the desired motions to the worker. However, one
can imagine HITs than contain screenshots or recordings of
a reference session that the worker is asked to replicate.

Not so much a threat to external validity, but a factor that
may make it undesirable to use our approach is that for
proprietary systems it may be undesirable to have arbitrary
workers (who are not under any Non-Disclosure Agreement)
testing the system.

B. Future work

The continuous tests in Section V were fairly unsystem-
atic, being mostly exploratory in nature: we did not attempt
to ensure sufficient coverage of the systems under test.
(We did show in [15] that our VM instantiation framework
makes it easy to build (part of) the system under test with
coverage instrumentation. The coverage information from all
assignments can then be gathered from each assignment’s
VM and combined to generate a coverage report.) This
leads to an important economic consideration that we have
neglected here: how many HITs are necessary, and at what
(total) price, to provide sufficient test coverage for a given
system? To discover this, it would be interesting to use
crowdsourcing in conjunction with a more systematic GUI
testing method (e.g. [3]).

Our approach is not tied to MTurk and could be used
beyond crowdsourcing systems. For instance, the “VM in
a browser” method along with the video recordings might
be very useful in a bug tracking system: when users report
a bug, they could be asked to reproduce the bug in a VM
served by the bug tracker website. In our experience with
Tribler, we have seen that recordings of actions leading up
to a bug are very useful: it makes it harder for a developer
to close a hard-to-reproduce bug with a “works for me”, and
may make it easier to pinpoint the bug.

VII. CONCLUSION

In this paper, we have described a method for crowdsourc-
ing of GUI tests based on instantiating the system under
test in virtual machines that are served to a geographically
dispersed pool of workers. We conclude that this approach
works well in terms of technical feasibility — while many
workers have slow connections, this does not prevent them
from completing tasks successfully.

For continuous testing, our experiments show that crowd-
sourcing is a very promising approach, even though the
number of incorrect results is somewhat high. We believe
that better HIT design and worker qualification can improve
this in the future. For usability studies, our experiments
demonstrated that crowdsourcing enables a much larger
group of participants to be mobilised at much lower cost
than would be feasible in a conventional approach.

Acknowledgments: We wish to thank Martha Larson
for her advice on crowdsourcing and her comments on the
design of the A/B test; Niels Zeilemaker for discussions
and fixing bugs in Tribler; and of course all workers who
participated in our HITs.

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired, vol. 14, no. 6,
Jun. 2006.

[2] A. M. Memon, “A comprehensive framework for testing
graphical user interfaces,” Ph.D. dissertation, University of
Pittsburgh, 2001.

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

(13]

(14]

L. White and H. Almezen, “Generating test cases for GUI
responsibilities using complete interaction sequences,” in Pro-
ceedings of the 11th International Symposium on Software
Reliability Engineering (ISSRE "00). Washington, DC, USA:
IEEE Computer Society, 2000, pp. 110-121.

X. Yuan and A. M. Memon, “Using GUI run-time state as
feedback to generate test cases,” in Proceedings of the 29th
International Conference on Software Engineering (ICSE
’07), May 2007, pp. 396-405.

Q. Xie, “Developing cost-effective model-based techniques
for GUI testing,” in Proceedings of the 28th International
Conference on Software Engineering (ICSE '06). New York,
NY, USA: ACM, 2006, pp. 997-1000.

B. A. Myers, “State of the art in user interface software tools,”
in Advances in Human-Computer Interaction, H. R. Hartson
and D. Hix, Eds. Ablex Publishing, 1993, vol. 4, pp. 110-

150.
P. G. Ipeirotis. (2008, Sep.) Why peo-
ple participate on Mechanical = Turk. [Online].

Available: http://www.behind-the-enemy-lines.com/2008/09/
why-people-participate-on-mechanical.html

——. (2010, Dec.) Mechanical Turk: Now with 40.92% spam.
[Online]. Available: http://www.behind-the-enemy-lines.com/
2010/12/mechanical-turk-now-with-4092-spam.html

V. Ambati, S. Vogel, and J. Carbonell, “Active learning and
crowd-sourcing for machine translation,” in Proceedings of
the Seventh conference on International Language Resources
and Evaluation (LREC’10), N. C. C. Chair), K. Choukri,
B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner,
and D. Tapias, Eds. Valletta, Malta: European Language
Resources Association (ELRA), may 2010.

0. F. Zaidan and C. Callison-Burch, “Crowdsourcing trans-
lation: Professional quality from non-professionals,” in Pro-
ceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Jun. 2011, pp.
1220-1229.

S. Novotney and C. Callison-Burch, “Cheap, fast and good
enough: automatic speech recognition with non-expert tran-
scription,” in Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the
Association for Computational Linguistics. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2010, pp.
207-215.

G. Paolacci, J. Chandler, and P. G. Ipeirotis, “Running experi-
ments on Amazon Mechanical Turk,” Judgment and Decision
Making, vol. 5, no. 5, pp. 411-419, Aug. 2010.

M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon’s
Mechanical Turk: A new source of inexpensive, yet high-
quality, data?” Perspectives on Psychological Science, vol. 6,
no. 1, Jan. 2011.

J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang,
A. Tosup, D. H. J. Epema, M. Reinders, M. R. van Steen,
and H. J. Sips, “Tribler: a social-based peer-to-peer system,”
Concurrency and Computation: Practice and Experience,
vol. 20, pp. 127-138, Feb. 2008.

[15]

[16]

(17]

(18]

[19]

S. van der Burg and E. Dolstra, “Automating system tests us-
ing declarative virtual machines,” in 21st IEEE International
Symposium on Software Reliability Engineering (ISSRE ’10).
IEEE Computer Society, Nov. 2010.

E. Dolstra and A. Loh, “NixOS: A purely functional Linux
distribution,” in 13th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP 2008). ACM, Sep.
2008.

E. Dolstra, E. Visser, and M. de Jonge, “Imposing a memory
management discipline on software deployment,” in Pro-
ceedings of the 26th International Conference on Software
Engineering (ICSE 2004). 1EEE Computer Society, May
2004, pp. 583-592.

A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory
density by using KSM,” in Proceedings of the Linux Sympo-
sium, Jul. 2009.

R. Kohavi, R. Longbotham, D. Sommerfield, and R. M.
Henne, “Controlled experiments on the web: survey and
practical guide,” Data Mining and Knowledge Discovery,
vol. 18, pp. 140-181, Feb. 2009.

