
Crowdsourcing GUI Tests

Eelco Dolstra∗, Raynor Vliegendhart† and Johan Pouwelse‡
∗ LogicBlox, Inc., Atlanta, GA, USA, eelco.dolstra@logicblox.com

† Department of Intelligent Systems, Delft University of Technology, Netherlands, r.vliegendhart@tudelft.nl
‡ Department of Software and Computer Technology, Delft University of Technology, Netherlands, j.a.pouwelse@tudelft.nl

Abstract—Graphical user interfaces are difficult to test:
automated tests are hard to create and maintain, while manual
tests are time-consuming, expensive and hard to integrate in
a continuous testing process. In this paper, we show that it is
possible to crowdsource GUI tests, that is, to outsource them
to individuals drawn from a large pool of workers on the
Internet, by instantiating virtual machines (VMs) running the
system under test and letting testers access the VMs through
their web browsers. This enables semi-automated continuous
testing of GUIs and usability experiments with large numbers
of participants at low cost. Several large experiments on the
Amazon Mechanical Turk demonstrate that our approach is
technically feasible and sufficiently reliable.

I. INTRODUCTION

Testing of graphical user interfaces (GUIs) is a perennially
difficult problem. Ideally, developers test a GUI automati-
cally, just as any other part of a program; this allows a GUI
to be tested from a continuous build system, e.g., on every
commit. However, automated GUI testing approaches tend to
be brittle: test cases can easily break due to minor changes
in the GUI, leading to high test maintenance effort or bit
rot in the test suite. It is also difficult for a computer to
determine if the visual appearance of a program is correct.

Thus, GUI testing remains primarily a human task: flesh-
and-blood testers are required to execute test actions and
check the results. This is labour-intensive and expensive. For
instance, it is hard to expect developers to perform an in-
depth GUI test on every commit. And employing dedicated
testers is inelastic: it is hard to quickly scale the number of
testers up or down in response to changes in demand (e.g. to
continuously test a new experimental branch of the product).

Because of this, companies have applied crowdsourcing
to GUI testing: i.e., they outsource GUI testing to a large
pool of testers around the world. However, these approaches
require testers to install and maintain the application under
test on their local machines. This imposes a high barrier to
entry to testers and increases the cost of testing.

In this paper, we show that it is possible to crowdsource
GUI tests using automatically instantiated virtual machines
(VMs) that testers access through their web browsers. This
moves the burden of maintaining the test environment from
the tester to an automated process on a server. We have
implemented a prototype implementation of this idea on
Amazon’s Mechanical Turk (MTurk), a crowdsourcing mar-
ketplace that allows requesters to submit Human Intelligence

Tasks (HITs) to be performed by workers against a fee.
When workers accept a GUI testing task through the MTurk
web site, they are presented with a web page that shows
the display of a remote VM running the GUI under test and
allows mouse and keyboard interaction with the VM. The
workers are asked to execute a sequence of steps described
in the task and report the results. The interaction of the
testers with the virtual machines is captured by recording
the displays of the VMs, allowing developers to analyse and
reproduce reported problems in a much more straightforward
manner than, say, from a problem description in a bug report.

This approach has two primary applications explored in
this paper. The first is semi-automated continuous testing:
periodically, or every time a developer commits a change to
the source of a project, a continuous build system compiles
the latest revision of the project, then creates HITs in
Mechanical Turk to test the project. The second is usability
studies: a HIT can ask workers to accomplish a goal,
rather than perform a precisely described sequence of steps.
Developers can then draw qualitative and quantitative con-
clusions about the usability of their program by observing
success rates and completion times, and analysing recordings
to discover interesting interaction patterns. Conventionally,
such experiments are difficult because it is hard to find a
sufficiently large number of participants to allow statistically
significant conclusions to be drawn; crowdsourcing makes it
much easier to mobilise a large group of participants quickly.

There are two economic arguments to crowdsource GUI
tests. First, as with conventional outsourcing, testers often
come from lower-income regions and are thus likely to be
cheaper than local hires. Second, the labour pool is much
more flexible: it is easy to scale up or down the number of
testers as conditions require.

To evaluate our approach, we have performed several
experiments involving 398 workers. To determine feasibility
of crowdsourcing for continuous testing, we used a number
of test subjects: KDE and Xfce, two desktop environments
for Unix, and Tribler, a peer-to-peer file-sharing program.
This evaluation sought to answer two principal research
questions: 1) Is crowdsourcing of GUI tests technically
feasible? (For instance, bandwidth or latency limitations of
workers might make it too hard to complete tasks in a
reasonable amount of time.) 2) Is the method sufficiently
reliable? (E.g., if the false negative rate is too high, bugs go

undetected; if the false positive rate is too high, developers
will waste time investigating non-existent problems.) Our
experiments suggest that both are the case, though further
work on HIT design is desirable to improve reliability.

For crowdsourcing of usability experiments, the main
research question is whether it is possible to get statistically
significant measurements of task completion times, despite
the huge variance in worker connection speeds. Therefore,
we ran A/B tests of variants of Tribler to determine whether
an experimental user interface feature had a measurable
effect on user efficiency. This experiment suggests that
crowdsourcing is a cheap and effective method to run
usability experiments involving hundreds of participants.

The structure of this paper is as follows. We first describe
the background of our work (Section II). We then give a
high-level overview of the method (Section III) and discuss
technical aspects of our prototype system (Section IV). Fi-
nally, we present and discuss the results of our experimental
evaluation (Section V).

II. BACKGROUND AND RELATED WORK

A. GUI Testing

Graphical user interfaces are an important part of many
software systems, such as desktop or mobile applications.
The GUI is typically the most visible part of an application
to end users. Thus, developing and testing the GUI takes up
a significant part of the development effort — as much as
50–60% [1]. However, testing a GUI is a difficult problem
because it is hard to automate. As with most other forms
of testing, automating GUI tests is desirable because it
gives developers confidence that the changes they make do
not break functionality (e.g., by having a continuous build
system run a test suite on every code change). Unfortunately,
it is difficult to create a test case for some GUI functionality
because it is hard to conveniently specify the required input
(e.g., mouse clicks) and the expected output (e.g., the desired
appearance of the application window).

Automated GUI testing approaches range from low-level,
capture/replay methods to high-level, model-driven methods.
In the former, a testing tool records the keyboard and mouse
events from a sample session performed by a developer.
These events can then be replayed to test the GUI. The
downside of this approach is that it is very sensitive to
changes to the GUI: in the most simplistic case, where
one records (say) mouse clicks using their absolute screen
coordinates, a minor rearrangement of GUI elements can
cause the test to fail. Using the identity of the logical GUI
element that received the event makes the test less brittle,
but does not work if the absolute position is significant.
Model-driven approaches (see e.g. [2], [3]) use white-box
knowledge of the internal structure of the GUI to generate
test cases. Model-driven tools tend to be specific to a
programming language and GUI framework. An important
issue in automated testing is the test oracle problem: how

does the test decide that the visual appearance of the GUI
is correct? Doing a pixel-precise comparison of the screen
or window against a reference output is clearly fragile. (The
“pass” criterion for GUI tests is therefore often simply that
the application under test did not crash.) Various approaches
to automate test oracles are described in [4], [5], [6], [7].

There are also semi-automated methods; e.g., White and
Almezen [8] propose a method that uses a finite-state model
of the GUI to generate test cases to be performed by a human
tester. In their evaluation, they distinguish between defects
(deviations from the specification) and surprises (a departure
from “expected” behaviour, as seen by the user). Clearly,
the latter are hard to identify using an automated process;
as Meyers noted, “Automated testing tools are rarely useful
for [current GUIs], since they have difficulty pretending to
be users” [9].

Thus, GUI testing remains for a large part a human
activity: human testers use the GUI and check the results,
on an ad hoc basis or by following a test plan. But as we
noted above, this is expensive and inflexible in responding
to changes in demand.

B. Crowdsourcing and the Amazon Mechanical Turk

Because of this, we explore a different approach: namely,
to crowdsource the problem, which is the act of outsourc-
ing a task to individuals recruited from a large pool of
available workers on the Internet with whom one has no
direct relationship [10]. As an early example, the Distributed
Proofreaders website1 of Project Gutenberg asks volunteers
to proofread and correct automated scans of books for
mistakes in the OCR process. Crowdsourcing activities vary
wildly, ranging from large tasks such as website design (e.g.,
crowdSPRING2) to microtasks such as classifying images.
Tasks are often performed in exchange for a fee, such as a
“micropayment” of a few cents for small task.

The main attraction of crowdsourcing for task creators
is the low cost and flexibility in recruiting participants.
Crucially, crowdsourcing is elastic: increasing or decreasing
the number of tasks in response to changing demand is much
simpler than if one had to hire or fire workers.

The best-known example of a crowdsourcing system
is Amazon Mechanical Turk3 (MTurk), created by Ama-
zon.com in 2005. The name originates from an 18th-century
chess-playing “machine” that in reality contained a hidden
person to decide chess moves. Analogously, MTurk allows
one to submit tasks and get results back as if they were
performed automatically. These tasks are called Human
Intelligence Tasks (HITs); the submitters of HITs are called
requesters, while individuals who perform tasks are workers.
Typical tasks include classifying web pages or images (e.g.

1http://www.pgdp.net/
2http://www.crowdspring.com/
3http://www.mturk.com/

to screen for offensive content), transcribing audio frag-
ments, translating text fragments, searching for company
websites on Google to determine search engine presence,
and, unfortunately, engaging in various forms of spam [11].
The reward is typically a few US dollar cents.

The MTurk workflow is as follows. Requesters create a
HIT by writing a task description and a summary, and add
keywords to allow workers to find it easily. The requester
also sets the desired number of assignments, which is the
number of workers that should perform the HIT, and the
reward per assignment. The requester submits the HIT to
MTurk, receiving a HIT ID. The HIT then becomes visible
on the MTurk website to workers who view or search the
list of available HITs. Workers can preview and then accept
the HIT, at which time an assignment is instantiated with
a unique assignment ID. The task description in a HIT can
be an arbitrary HTML page; apart from a description of the
steps to be performed by the worker, it typically contains
some form fields to allow the worker to enter results. After
completing the task and clicking on the submit button, the
worker’s answers are stored by Amazon and can be viewed
or downloaded by the requester. The requester can then
approve or reject an assignment; in the former case, the
worker is paid the HIT’s reward.

There has been a large number of publications on using
MTurk in research. For instance, it has been used to create
training data for machine translation systems [12], [13], the
results similar to those obtained from professional translators
but more than an order of magnitude cheaper; to train
automatic speech recognition systems [14], finding that the
ability to easily gather more data compensates for decreased
data quality; and in social science and psychological exper-
iments [15], [16], where the use of MTurk helps to recruit
more participants than would otherwise be feasible, and the
wider demographic range of workers reduces the typical
selection bias caused by using only university students in
such experiments. On the other hand, Adar [17] criticises
crowdsourcing research, pointing out that “showing that
humans can do human work is not a contribution.”

More directly relevant to the present work is that MTurk
is used for UI testing. Testing web applications is technically
straightforward, since workers already have a web browser;
thus a HIT for testing the usability or functionality of a
web site simply provides the worker with a hyperlink to
the website to be tested. Going further, TryMyUI4 provides
usability testing to its customers by recording both the screen
of workers, showing them interacting with the website, and
the worker’s microphone, allowing them to comment on the
website. TryMyUI recruits testers on MTurk; however, the
screen and audio recording requires workers to run a special
Java applet. uTest5 (not MTurk-based) allows testing of

4http://www.trymyui.com/
5http://www.utest.com/

VM server

VNC server

Recordings

Web server

Result DB

HIT monitor

Amazon
MTurk server

HIT

Assignment
results

VM spec.

Task spec.

Developer

HIT in browser
(HTML + Flash)

Worker

VM pool

1

2 3

3

4

5
6

7

Figure 1. Overview of GUI testing on MTurk

desktop and mobile applications using crowdsourced testers.
However, it requires them to install the application under test
as well as tools for recording sessions on their own devices.
By contrast, our approach uses remote virtual machines
accessed through a standard web browser. Thus it has a
much lower barrier to entry for testers, enabling cheaper
crowdsourcing.

III. OVERVIEW

This section gives a high-level overview of our MTurk-
based GUI testing approach. The main technical goal is to
allow MTurk workers to start testing GUIs with as little
overhead as possible. Thus, the installation of specialised
software on the worker’s machine (such as the system under
test) should not be necessary: everything should run in
the worker’s browser. We accomplish this by automatically
instantiating virtual machines running the system under
test on a server. The workers then connect to the display,
keyboard and mouse of the virtual machine through a Flash
application included in the HIT.

A schematic depiction of the process of creating a GUI
testing HIT, performing the HIT assignments and processing
the results, is shown in Figure 1. The steps in this process
referenced in the figure are as follows:

1© — The developer writes a task description that lists
the steps to be performed by workers. This description is
an XML file listing steps that consist of an action to be
performed and a question to be answered by the worker.

<task description="Tribler download test">
<step onFailGoTo="end">
<question>Do you see a window named
"Tribler"?</question>

</step>
<step onFailGoTo="channels">
<action>In the search box, type "Ubuntu" and
press enter. Wait a few seconds.</action>

<question>Do results appear?</question>
</step>
<step onFailGoTo="channels">
<action>Click on the Download button next
to the top result. This should start
the download.</action>

</step>
<step onFailGoTo="channels">
<action>Click on the Library button at the
top.</action> <question>Is the download in
progress?</question>

</step>
<step id="channels" onFailGoTo="offensive">
<action>Click on the Channels button at the
top.</action> <question>Does a list of
"Popular Channels" appear?</question>

</step> ...
<step id="offensive">
<question type="text">Click on the Home button
at the top. If you see offensive words appear
at the bottom of the window, list them here. ...

</step>
</task>

Figure 2. Task description of a Tribler GUI test

Questions can have several types, such as Boolean (yes/no)
or textual (e.g. to ask an open question). It also specifies
metadata such as the reward for the task.

Figure 2 shows a somewhat abbreviated task description
for testing Tribler, a completely decentralised peer-to-peer
file-sharing application [18]. The task tests Tribler’s most
significant functionality: the ability to search for and down-
load files and to find and browse “channels” (a mechanism
for users to publish collections of files). Because Tribler has
an optional “family filter” to remove potentially offensive
results from search results, the task also asks workers to look
at the “network buzz” search terms and report any offensive
words they see. This is a highly subjective task that can only
be performed by a human.

If a step does not specify a question, the default Boolean
question “Did you succeed?” is used. Actions may be
omitted if the question just requires the worker to visually
inspect the display. The onFailGoTo attribute is used to
cause a failing step (i.e. one answered with “no”) to skip to
the indicated step. For instance, if searching for “Ubuntu”
fails to return results, then the steps asking the worker to
download Ubuntu will be skipped.

2© — The developer also writes a virtual machine specifi-
cation that describes how to build a virtual machine contain-
ing the necessary software automatically and reproducibly.
(This is discussed in more detail in Section IV.) For instance,
for the Tribler task, the VM specification states that the
virtual machine should run the Xfce desktop environment

(to provide a window manager, necessary in a Unix-based
GUI environment), contain the Tribler client and start Tribler
automatically when the VM boots.

The VM specification can provide an acceptance check, a
script run after the worker finishes the task. Its purpose is to
do a basic sanity check to verify that the worker completed
the task correctly. This allows some suspicious assignments
to be flagged automatically; e.g., if the acceptance check
fails but the worker says that all steps succeeded, this may
indicate cheating. For Tribler, the acceptance check verifies
that a file has appeared in Tribler’s download directory,
indicating that the worker completed the download step
correctly.

3© — From the task description and the VM specification,
virtual machines are instantiated on the VM server, and a
HIT is created in MTurk (using the MTurk API). The HIT
is shown on the MTurk worker website.

4© — When a worker accepts a GUI testing hit in his
web browser, a web page appears showing a virtual machine
and the first step to be performed (along with some general
instructions). Mouse movements, clicks and key presses are
sent to the virtual machine. Answering a question causes the
next step to appear. Figure 3 shows an example of a HIT
containing a running VM. The virtual machine instance is
unique to this particular worker; each worker gets his own
VM instance, and thus cannot interfere with other workers.
The VM server starts recording the screen of the VM as
soon as the worker connects, and stops recording when
the worker disconnects. The server also logs keyboard and
mouse events.

5© — When the worker clicks the submit button, the
answers to each step are sent to MTurk.

6© — The VM server periodically fetches assignment
results from MTurk. When a worker’s assignment result is
received, the acceptance check script is run inside the VM
of the worker, which is then terminated.

7© — Developers can browse HITs and submitted assign-
ments on a website served by the VM server. Figure 4 shows
an example of an assignment result page. In this example
taken from an actual HIT6, the worker reported that he or she
was unable to start the download initially. The recording of
the VM’s display, which can be played back by clicking on
the “Video” link, allowed the Tribler developers to see the
problem immediately: after clicking on “Download”, Tribler
asynchronously fetches the corresponding Torrent file; under
some conditions, however, it would not actually start the
download after obtaining this file.

HITs can be created on an ad hoc basis, e.g., for usability
testing experiments. However, most HITs are created auto-
matically from a continuous build system. For instance, for
every commit in Tribler’s version control system, the task
in Figure 2 is instantiated with the latest checkout.

6http://nixos.org/mturk/job/6

Figure 3. A Tribler GUI testing HIT as it appears in a worker’s web
browser, at step 3 of the task

Our prototype system considers a GUI test HIT to pass if
at least 60% of all assignments indicated no problems (that
is, answered “yes” to all questions) and passed the automatic
acceptance check. It is considered to fail if at least 60% of
all assignments indicate a problem (i.e., answered “no” to
at least one question). Otherwise, the result is inconclusive.
The result is often useful and revealing to developers in any
of these cases, since even a passing or inconclusive test can
show interesting interaction patterns.

IV. IMPLEMENTATION

We now describe several significant technical aspects of
our prototype system.

A. Building VMs

To specify and instantiate VMs, we applied our previous
work on automating system tests [19]. There, we used
declarative models such as the one shown in Figure 5
(explained below) to build virtual machines in which to
run automated system tests. Such specifications consist of
a description of the desired configuration of each machine,
along with an imperative script that runs test actions on the
machines. This approach builds on NixOS [20], a Linux
distribution based on the purely functional Nix package man-
ager [21], to ensure that VMs can be instantiated efficiently
(i.e., without building large disk images), an important
property for use in continuous build systems. Here, instead

Figure 4. An assignment result page, showing a failing test

of doing automated tests, we use this method to prepare
virtual machines for interactive tests.

Figure 5 shows the specification of the virtual machine
used by the Tribler GUI test in Figure 2. This is a function
that takes as an argument the path to the source code of
Tribler (at point 1©). This enables it to be called from
a continuous build system with the latest revision as an
argument to build the corresponding VM and HIT. The
function returns a call to makeMTurkTest at 2© that causes
the Nix package manager to build a script that starts the
virtual machine. All dependencies of this script – e.g., the
Linux kernel, the X11 window server, the Xfce desktop
environment and Tribler – are built as well if necessary.
(Nix can be thought of as a high-level, purely functional
Make that works at the level of packages.)

The attribute machine at 3© defines the configuration of
the virtual machine. For instance, it states that the VM
should have 1 GiB of RAM. For convenience, it is possible
to factor out commonality in VM configurations into sepa-
rate modules: thus, the Tribler configuration imports at 5©
several modules that set up the Xfce desktop environment,
and so on. The VM also includes a Tribler package built
from source code at 4©. (The function mkDerivation builds
packages from source.)

A Perl script to bring the VM into the desired state for
the GUI test is defined in the attribute prepareVM at 6©.
After implicitly starting the VM, it executes actions such
as waiting until the Xfce desktop environment has finished
booting (as indicated by the appearance of the xfce4-panel

{ triblerSrc }: 1© makeMTurkTest { 2©

machine = 3©
let tribler = stdenv.mkDerivation

{ ... src = triblerSrc; ... }; 4©
in
{ require = [./common-xfce.nix ...]; 5©

environment.systemPackages = [tribler];
virtualisation.memorySize = 1024;

};

prepareVM = ’’ 6©
Wait for the Xfce desktop to start.
$machine→waitForWindow(qr/xfce4-panel/);
Start Tribler, wait for it to appear.
$machine→execute("su - user -c

’DISPLAY=:0.0 tribler &’");
$machine→waitForWindow(qr/Tribler/);
Wait for Tribler to gather some buzz.
$machine→sleep(120);

’’;

acceptanceCheck = ’’ 7©
$machine→succeed(’[-n "$(find

/home/user/Desktop/TriblerDownloads
-maxdepth 1 -type f)"]’);

’’;
}

Figure 5. Virtual machine specification for the Tribler task

window), starting Tribler, and sleeping for a while to allow
Tribler to connect to peers on the Internet so that the Torrent
search facility works.

Likewise, the attribute acceptanceCheck at 7© defines
a script that checks whether the worker performed the
test successfully. (If it is omitted, assignment results are
unconditionally accepted.) Here, it tests whether a file has
appeared in the TriblerDownloads directory. This indicates
that Tribler has started to download at least one file.

B. Running VMs

For each HIT, the VM server pre-starts a pool of virtual
machines. It is necessary to start VMs in advance to ensure
that when a worker connects, he can access a VM immedi-
ately, rather than having to wait for a new VM to boot.

Virtual machines are executed using QEMU/KVM, a vir-
tualisation system for Linux. We enabled KVM’s same-page
merging feature, a memory deduplication method that allows
identical memory pages in different VMs to be merged into
a single page in the host’s physical RAM [22]. Since the
VMs in a pool are nearly identical, this allows significantly
more VMs to run on a host. For instance, during the second
A/B test described in Section V, it cut memory consumption
for a pool of 20–25 VMs from about 6.6 GiB to 3.6 GiB.

C. Accessing VMs

The HTML page for the HIT contains a Flash control
that uses the VNC remote desktop protocol to allow access
to the virtual machine. QEMU/KVM provides a built-in
VNC server to allow clients to access the VM remotely.

To access it, the client connects to a VNC multiplexer that
selects the correct VM instance for the client (based on
its HIT and assignment IDs), then proxies the connection
onward to the VNC server of the selected VM instance. The
VNC multiplexer is also responsible for producing a video
recording of the session.

The first time that a worker connects with a given 〈hitId,
assignmentId〉 tuple, the VNC multiplexer picks a VM from
the associated HIT’s pool of unused VMs. At this time,
a new VM is started to maintain the size of the pool of
unused VMs. The selected VM is thereafter considered in
use and is persistently associated with that assignment. Thus,
if the worker connects again with the same tuple (e.g., after
restarting his browser), the same VM will be selected.

We log when the worker selects an answer to a question
(i.e., clicks on the Yes or No radio buttons in Figure 3). This
is useful because it allows viewers to jump directly to the
point in the recording corresponding with a step in the task.

To obtain the results of submitted assignments, the VM
server periodically polls MTurk. When an assignment result
is received, the associated VM’s acceptance check is exe-
cuted, and the VM is terminated. When the target number
of assignments for a HIT has been submitted (e.g., 10 for
the Tribler test in Figure 2), all VMs associated with the
HIT are terminated. This includes unused VMs and VMs
associated with abandoned assignments.

V. EVALUATION

We have performed a number of experiments to determine
the feasibility of crowdsourcing of GUI tests. Specifically,
we set out to answer the following questions:

RQ1 Are workers technically able to perform the tasks?
For instance, if most potential workers have very slow
Internet connections, or if the latency is very high, this
may make it impossible in practice to crowdsource
GUI tests.

RQ2 Is crowdsourcing a feasible approach for continuous
testing? This requires that sufficiently many workers
correctly determine whether a test passes or fails.

RQ3 How long do crowdsourced GUI tests take, i.e., what
is the average runtime of a HIT?

RQ4 Is crowdsourcing a feasible approach for usability
experiments? In particular, in such experiments it is
often necessary to measure task completion times. If
these are extremely random due to factors such as
worker network latency and bandwidth, it may be
infeasible to get statistically significant results.

RQ5 How do we design a HIT so that HIT execution time
is minimised?

We do not directly evaluate economic usefulness (that is,
whether crowdsourcing is actually cheaper than conventional
testing); we do touch on this in the next section.

Country Workers Assign-
ments

Median
speed

(KiB/s)

Mean ping
(ms)

India 247 490 33.7 329
USA 42 49 200.3 202
UK 11 28 535.1 52
Pakistan 8 9 24.6 299
Romania 7 14 468.0 25

(27 countries omitted)
Total 398 700 48.0 260

Table I
WORKER DISTRIBUTION BY COUNTRY

A. Experimental Setup

All experiments (i.e., all virtual machines) were run on a
single Dell PowerEdge R815 machine with 4 12-core AMD
6164 HE CPUs and 96 GiB of RAM. This server is located
in the Netherlands, which is, as we shall see, far from the
majority of workers, thus affecting latency negatively.

The workers participating in our HITs were self-selected;
we had no control over which workers accepted a HIT. The
Mechanical Turk allows requesters to require that workers
meet certain qualifications, such as geographical location, a
minimum acceptance rate for past assignments, or passing
a qualification HIT (a HIT that has to be performed before
the worker can do other HITs). In order not to introduce any
bias into the set of workers, we did not require qualifications
from workers.

B. Worker Demographics

In our experiments, we gathered various bits of informa-
tion about workers that are relevant to HIT design and tech-
nical and economic feasibility. These include information
about the location of the workers, their network bandwidth
and latency, and their display resolutions.

In the evaluation below, we ran 51 HITs on the MTurk.
In total, 398 unique workers from 32 different countries
submitted 700 assignments. Table I shows the top 5 worker
countries, along with the median download speed and aver-
age ping time between the worker and the VM server. To
estimate a worker’s download speed, we instrumented our
HITs with some JavaScript to have the worker’s browser
fetch a file from the VM server. Ping time was determined
by having the VNC multiplexer perform a ping to the client
when it connects.

As the table reveals, the vast majority of workers come
from India. This is unsurprising, since India is the only coun-
try besides the U.S. where Amazon pays workers directly;
in all other countries, workers receive Amazon store credits.
Connection speeds of Indian workers are fairly low. This has
an effect on task completion time, as we shall see below, but
not a fatal one. Some workers complained that access to the
VM was slow, but in most cases did manage to complete
the task. (Our HIT summary did advice workers that a
“reasonably” fast Internet connection was recommended.)

Addressing RQ5, we also instrumented HITs to log the
screen resolution of workers. This is a particularly important
data point, because a good work flow is only possible
if the VM display and the current step in the task are
simultaneously visible (as in Figure 3). If the VM screen
is too large, workers will have to scroll or pan frequently,
significantly increasing the task completion time. We found
that the most common resolutions are fairly low: 25.3% of
workers have a 1024x768 screen, 20.7% have 1366x768 and
11.8% have 1280x800. We initially used a VM resolution of
1024x768, but after this analysis, we lowered the resolution
to 800x600 (for most HITs) and 640x480 (for some HITs).

C. Continuous Testing

To address RQ1 and RQ2, we created a number of GUI
testing task descriptions and attached them to a continu-
ous build system. That is, HITs were instantiated when
developers committed changes, subject to a minimum time
interval between HITs. For almost all HITs, we requested
10 assignments to be submitted. The tests are the following:
• Tribler test: the test shown in Figures 2 and 5. Tribler

is written in Python and uses the wxPython GUI toolkit.
The HIT is built from Tribler’s Subversion repository.

• KDE login/logout test: KDE is a desktop environment
for Unix. The VM preparation script boots KDM, the
KDE login manager. The test asks workers to login, start
the Konqueror web browser and visit a given URL, then
logout. KDE is written in C++ and uses the Qt GUI
toolkit. This and the remaining tests are built from the
repository of the NixOS Linux distribution; thus they are
continuous system tests of NixOS, rather than KDE.

• KDE USB stick mounting test: The preparation script
provides a logged-in KDE session. The test is to open
the Dolphin file manager, click on a USB stick to mount
it, copy a file from the USB stick, unmount the USB stick,
and open the copied file. (This test uses QEMU’s ability to
virtualise USB hardware; the “USB stick” is a disk image
passed to QEMU.) This is a good system test because
the ability to mount external devices in KDE depends on
many system and desktop components working in concert
(e.g., udev, udisks, PolicyKit, and ConsoleKit).

• Xfce editor test: Xfce is another desktop environment for
Unix. The test is to create a file in the Xfce editor ap-
plication, save it, then reopen it in the Xfce file manager.
Xfce is written in C and uses the GTK+ toolkit.
Table II summarises the results of the HITs instantiated

from these tests7. For each test, we list the reward per
assignment; the number of HITs created; the average runtime
of the HITs, that is, the time between creation of the
HIT and submission of the last assignment; the number of
assignments submitted or abandoned; the median duration

7Detailed results of these HITs, including all video recordings, are
available at http://nixos.org/mturk.

Tribler KDE
login

KDE
mount

Xfce

Reward $0.15 $0.10 $0.10 $0.10
Hits 14 10 11 10
Average runtime 2.0 h 3.6 h 2.0 h 2.1 h
Submitted 145 100 115 100
Abandoned 9 9 11 7
Workers 112 86 94 85
Median duration 314.0 s 327.5 s 240.0 s 246.5 s
Hourly rate $1.72 $1.10 $1.50 $1.46
% Correct 66.9% 77.0% 68.7% 82.0%
% Tech. issues 5.5% 6.0% 5.2% 3.0%
% Misunderstood 2.1% 6.0% 13.9% 2.0%
% Fraud 3.4% 4.0% 2.6% 7.0%

Table II
RESULTS OF THE CONTINUOUS TESTING HITS

of assignments, that is, the time between HIT acceptance
and result submission; the effective hourly rate paid to the
median worker; the percentage of submissions that correctly
classified the HIT as pass or fail, as appropriate; and the
number of assignments where the worker reported running
into technical issues (e.g., the VNC Flash control gave an
error), where the worker misunderstood the task, and where
the worker submitted a fraudulent result (e.g., clicked “yes”
on all steps, while the recording shows no activity). This
classification was done manually by viewing the recordings.

We manually injected faults into the systems under test in
some HITs. For instance, for the KDE USB mounting test,
we created a HIT with a broken PolicyKit configuration,
preventing users from mounting external devices.

Gratifyingly, some reported failures were the results of
actual bugs introduced (unwittingly) by NixOS developers.
For instance, in one case8, an upgrade from GTK+ 2.24.5
to 2.24.6 caused a regression in the Xfce editor: the Save
as dialog box was suddenly much larger, causing the Save
button to fall off the screen. Some workers worked around
this issue by moving the window and reported no error;
others flagged failure and reported in the comment field that
there was no Save button Note that this kind of bug might not
be found by many automated testing frameworks, because
the dialog responds fine to simulated abstract events. (This
probably counts as a “surprise” in the sense of [8].)

As Table II shows, the number of incorrect assignment
results is fairly high (though at 10 assignments per HIT,
the correct results generally outvote the incorrect ones). We
analysed the assignments to see why this was the case.
One important cause is that workers are often sloppy in
performing steps precisely: for instance, in the Xfce test,
users are asked to create a file named test.txt; however, many
workers used a different file name (e.g., bla.txt), causing the
acceptance check to fail. For the Tribler test, an interesting
cause is visual lag: many workers reported that the third
step (clicking on “Download”) did nothing. This is likely

8http://nixos.org/mturk/job/28

 0

 2

 4

 6

 8

 10

Tribler KDE login KDE mount Xfce All

T
im

e
un

ti
l s

ub
m

is
si

on
 (

h)

Figure 6. Box plots showing the distribution of assignment submission
times relative to the creation time of the HIT

because the briefly flashing “Download started” message is
not seen on slow connections.

We measured how long it takes for results to come in
(RQ3). The box plots in Figure 6 show, for each of the
continuous tests and all together, how long after the creation
of the HIT assignments were submitted. (The boxes denote
the upper and lower quartile; the line in each box is the
median; and the whiskers denote the extremes.) This shows
that most submissions come in quickly, but the outliers cause
some HITs to take several hours to complete.

D. Usability Testing

To discover whether crowdsourcing is a feasible method
for GUI usability experiments (RQ4), we ran two A/B
tests [23] to compare user performance between different
variants of Tribler. Specifically, we were interested in evalu-
ating the usefulness of an experimental Tribler feature called
bundling, which groups related search results together on
the basis of a number of criteria, such as file name or
size. For instance, episodes of a television series may be
grouped together. Thus, the main A/B experiment is to create
a HIT in which half the users get a Tribler instance with
bundling disabled, and the other half get one with bundling
enabled. This is implemented by filling the VM pool for
a HIT with two kinds of VMs (which can be arbitrarily
different). A worker is thus randomly assigned either the
A or B variant by the VNC multiplexer. The goal of the
experiment is to establish whether there is a statistically
significant difference in the average time between a user
initiating a search, and pressing the download button on the
appropriate search result. That is, the null hypothesis H0 is
that µA = µB (where µ is the mean time interval), while
the alternative hypothesis H1 is that µA < µB .

However, we worried about the main threat to the validity
of results from a crowdsourced experiment: the large vari-
ance in worker connection latency and bandwidth (as seen
above), which in turn can cause a large variance in assign-
ment completion times. Thus, to evaluate the experimental
method itself, we first performed an A/B test between the
non-bundling variant, and the non-bundling variant with an

 0

 20

 40

 60

 0 200 400 600

M
ed

ia
n

se
ar

ch
 ti

m
e

(s
)

Bandwidth (KiB/s)

Figure 7. Worker bandwidth vs. median search time in the Tribler A/B
tests, with best-fit linear regression line

artificial delay of 2 seconds in the presentation of search
results to the user. We then expected to observe a difference
in the average time interval (ideally, +2 seconds).

We instrumented Tribler to log search and download
actions, and created a HIT that asked users to enter a variety
of search terms and find a specific file in the resulting list.
The HIT requested workers to perform the task without
interruptions. We ran the HIT with 100 assignments (and
thus 100 workers), which took 28 h 58 m to complete. With
a reward of $0.25 per assignment, this experiment cost $25.
This yielded 354 measurements for the A (non-bundling)
variant and 330 for the B (delayed) variant. The median
interval was 19.6 s for A and 21.7 s for B, neatly conforming
to the 2 second delay in B. The arithmetic means, however,
were 30.8 s versus 28.9 s, mostly because the A set had a few
extreme outliers. The trimmed means obtained by discarding
the 10% highest measurements were 21.3 s versus 22.2 s.
Discarding the 25% highest measurements to account for
the skew in the distribution, Student’s t-test rejects H0 at
P = 0.049, a significant result.

With the same setup, we performed an A/B test comparing
the non-bundling and bundling variants. This HIT took 28 h
48 m to complete and yielded 332 measurements for the non-
bundling variant and 269 for the bundling variant. Here there
was no clear difference between the variants: the trimmed
means were 19.9 s and 21.4 s, and the medians 18.3 s and
19.2 s, respectively. The null hypothesis was not rejected
at P = 0.494. Thus the experiment suggests that bundling
does not lead to faster search result interpretation by users.

Returning to RQ1, Figure 7 shows the relationship be-
tween a worker’s bandwidth and the median search time for
the queries performed by each worker during the A/B tests.
This suggests that faster connections do reduce task comple-
tion time, but the effect is fairly modest; slow connections
are no major impediment.

E. Summary of Results

We now summarise the conclusions to the research ques-
tions. We can answer RQ1, whether workers are technically
able to perform the tasks, in the affirmative. RQ2 asks
whether crowdsourcing is feasible for continuous testing;
this is definitely the case for simple tasks, but for complex
tasks, more work on task design, worker qualification and
result processing is needed. RQ3 concerns the runtime of
GUI testing HITs, which we have shown to be on the
order of a few hours. Our Tribler A/B tests show that the
answer to RQ4 – whether crowdsourcing can be employed
for usability experiments – is positive. RQ5 is an open-ended
question regarding HIT design; our contribution is that VM
resolutions should be minimised and task steps should be
simple and unambiguous.

F. Threats to Validity

A threat to internal validity is that our evaluation was
conducted over a limited amount of time (around a month):
it is possible, for instance, that workers performed our HITs
because of their novelty and may lose interest over time.
This could cause HIT runtime to go up in the future.

There are a number of threats to external validity –
the extent to which our results can be generalised to
other situations. The most important is that crowdsourcing
assumes that there is a sufficiently large pool of people
motivated and able to work on the task. If the motivation
is financial, the crowdsourcing “business model” depends
in part on the existence of countries with low per-capita
GDP, good Internet connectivity, and a large population
that understands the language of the task. If these are not
available, crowdsourcing may not work, or may be more
expensive. In the latter case, crowdsourcing is still useful for
its elasticity (the ability to quickly attract more workers).

Second, for usability tests, we assume that the worker
possesses the requisite knowledge to work with the applica-
tion. This is the case for applications that target a general
audience, such as Tribler, but may not hold for specialised
applications. For instance, we cannot use arbitrary workers
in a usability study of an Eclipse plugin. A qualification
HIT could address this, but there simply may not be enough
skilled and interested workers on MTurk.

Third, the task formalism assumes that tasks can easily
be described in words (e.g., “click on button Y”). For some
types of interaction, this may be insufficient. Consider a
drawing program where we want the worker to draw and
manipulate shapes in a certain way; it may be too difficult
to convey the desired motions to the worker. However, one
can imagine HITs than contain screenshots or recordings of
a reference session that the worker is asked to replicate.

The continuous tests in Section V were fairly unsystem-
atic, being mostly exploratory in nature: we did not attempt
to ensure sufficient coverage of the systems under test. This
leads to an important economic consideration that we have

neglected here: how many HITs are necessary, and at what
(total) price, to provide sufficient test coverage for a given
system? To discover this, it would be interesting to use
crowdsourcing in conjunction with a more systematic GUI
testing method (e.g. [8]).

VI. CONCLUSION

In this paper, we have described a method for crowdsourc-
ing of GUI tests based on instantiating the system under
test in virtual machines that are served to a geographically
dispersed pool of workers. We conclude that this approach
works well in terms of technical feasibility: while many
workers have slow connections, this does not prevent them
from completing tasks successfully.

For continuous testing, our experiments show that crowd-
sourcing is a very promising approach, even though the
number of incorrect results is somewhat high. We believe
that better HIT design and worker qualification can improve
this in the future. For usability studies, our experiments
demonstrate that crowdsourcing enables a much larger group
of participants to be mobilised at much lower cost than
would be feasible in a conventional approach.

Acknowledgments: We wish to thank Martha Larson
for her advice on crowdsourcing and her comments on the
design of the A/B test; Niels Zeilemaker for discussions and
fixing bugs in Tribler; and of course all workers who partic-
ipated in our HITs. This research was supported by NWO-
JACQUARD project 638.001.208 (PDS: Pull Deployment of
Services) and the NIRICT LaQuSo Build Farm project.

REFERENCES

[1] A. M. Memon, “A comprehensive framework for testing
graphical user interfaces,” Ph.D. dissertation, University of
Pittsburgh, 2001.

[2] X. Yuan and A. M. Memon, “Using GUI run-time state
as feedback to generate test cases,” in 29th Intl. Conf. on
Software Engineering (ICSE ’07), May 2007, pp. 396–405.

[3] Q. Xie, “Developing cost-effective model-based techniques
for GUI testing,” in 28th Intl. Conf. on Software Engineering
(ICSE ’06). ACM, 2006, pp. 997–1000.

[4] Q. Xie and A. M. Memon, “Designing and comparing au-
tomated test oracles for GUI-based software applications,”
ACM Transactions on Software Engineering and Methodoly,
vol. 16, Feb. 2007.

[5] A. M. Memon and Q. Xie, “Using transient/persistent errors
to develop automated test oracles for event-driven software,”
in 19th IEEE Intl. Conf. on Automated Software Engineering
(ASE ’04). IEEE Computer Society, 2004, pp. 186–195.

[6] A. M. Memon, I. Banerjee, and A. Nagarajan, “What test
oracle should I use for effective GUI testing?” in IEEE Intl.
Conf. on Automated Software Engineering (ASE ’03). IEEE
Computer Society, Oct. 2003, pp. 164–173.

[7] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Automated
test oracles for GUIs,” in 8th ACM SIGSOFT Intl. Symp. on
Foundations of Software Engineering (FSE-8). New York,
NY, USA: ACM, 2000, pp. 30–39.

[8] L. White and H. Almezen, “Generating test cases for GUI
responsibilities using complete interaction sequences,” in 11th
Intl. Symp. on Software Reliability Engineering (ISSRE ’00).
IEEE Computer Society, 2000, pp. 110–121.

[9] B. A. Myers, “State of the art in user interface software tools,”
in Advances in Human-Computer Interaction, H. R. Hartson
and D. Hix, Eds., 1993, vol. 4, pp. 110–150.

[10] J. Howe, “The rise of crowdsourcing,” Wired, vol. 14, no. 6,
Jun. 2006.

[11] P. G. Ipeirotis, “Mechanical Turk: Now with 40.92%
spam,” http://www.behind-the-enemy-lines.com/2010/12/
mechanical-turk-now-with-4092-spam.html, Dec. 2010.

[12] V. Ambati, S. Vogel, and J. Carbonell, “Active learning and
crowd-sourcing for machine translation,” in 7th Conf. on In-
ternational Language Resources and Evaluation (LREC’10).
Valletta, Malta: European Language Resources Association
(ELRA), May 2010.

[13] O. F. Zaidan and C. Callison-Burch, “Crowdsourcing trans-
lation: Professional quality from non-professionals,” in 49th
Annual Meeting of the Assoc. for Computational Linguistics:
Human Language Technologies, Jun. 2011, pp. 1220–1229.

[14] S. Novotney and C. Callison-Burch, “Cheap, fast and good
enough: automatic speech recognition with non-expert tran-
scription,” in Human Language Technologies: 11th Annual
Conf. of the North American Chapter of the Assoc. for
Computational Linguistics, 2010, pp. 207–215.

[15] G. Paolacci, J. Chandler, and P. G. Ipeirotis, “Running experi-
ments on Amazon Mechanical Turk,” Judgment and Decision
Making, vol. 5, no. 5, pp. 411–419, Aug. 2010.

[16] M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon’s
Mechanical Turk: A new source of inexpensive, yet high-
quality, data?” Perspectives on Psychological Science, vol. 6,
no. 1, Jan. 2011.

[17] E. Adar, “Why I hate Mechanical Turk research (and work-
shops),” in CHI 2011 Workshop on Crowdsourcing and Hu-
man Computation, May 2011.

[18] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang,
A. Iosup, D. H. J. Epema, M. Reinders, M. R. van Steen,
and H. J. Sips, “Tribler: a social-based peer-to-peer system,”
Concurrency and Computation: Practice and Experience,
vol. 20, pp. 127–138, Feb. 2008.

[19] S. van der Burg and E. Dolstra, “Automating system tests
using declarative virtual machines,” in 21st IEEE Intl. Symp.
on Software Reliability Engineering (ISSRE ’10). IEEE
Computer Society, Nov. 2010.

[20] E. Dolstra and A. Löh, “NixOS: A purely functional Linux
distribution,” in 13th ACM SIGPLAN Intl. Conf. on Func-
tional Programming (ICFP 2008). ACM, Sep. 2008.

[21] E. Dolstra, E. Visser, and M. de Jonge, “Imposing a memory
management discipline on software deployment,” in 26th Intl.
Conf. on Software Engineering (ICSE 2004). IEEE Computer
Society, May 2004, pp. 583–592.

[22] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory
density by using KSM,” in Linux Symposium, Jul. 2009.

[23] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M.
Henne, “Controlled experiments on the web: survey and
practical guide,” Data Mining and Knowledge Discovery,
vol. 18, pp. 140–181, Feb. 2009.

