
Automating System Tests Using Declarative Virtual Machines

Sander van der Burg
Delft University of Technology

Delft, The Netherlands
s.vanderburg@tudelft.nl

Eelco Dolstra
Delft University of Technology

Delft, The Netherlands
e.dolstra@tudelft.nl

Abstract—Automated regression test suites are an essential
software engineering practice: they provide developers with
rapid feedback on the impact of changes to a system’s source
code. The inclusion of a test case in an automated test suite
requires that the system’s build process can automatically
realise all the environmental dependencies of the test. These
are external elements necessary for a test to succeed, such as
shared libraries, running programs, and so on. For some tests
(e.g., a compiler’s), these requirements are simple to meet.

However, many kinds of tests, especially at the integration
or system level, have complex dependencies that are hard
to provide automatically, such as running database servers,
administrative privileges, services on external machines or
specific network topologies. As such dependencies make tests
difficult to script, they are often performed only manually, if
at all. This particularly affects distributed systems and system-
level software.

This paper shows how we can automatically instantiate the
complex environments necessary for tests by creating (networks
of) virtual machines on the fly from declarative specifications.
Building on NixOS, a Linux distribution with a declarative
configuration model, these specifications concisely model the
required environmental dependencies. We also describe tech-
niques that allow efficient instantiation of VMs. As a result,
complex system tests become as easy to specify and execute
as unit tests. We evaluate our approach using a number
of representative problems, including automated regression
testing of a Linux distribution.

I. INTRODUCTION

Automated regression test suites are an essential software
engineering practice, as they provide developers with rapid
feedback on the impact of changes to a system’s source code.
By integrating such tests in the build process of a software
project, developers can quickly determine whether a change
breaks some functionality. These tests are easy to realise for
certain kinds of software: for instance, a regression test for
a compiler simply requires compiling a test case, running it,
and verifying its output; similarly, with some scaffolding, a
unit test typically just calls some piece of code and checks
its result.

However, other regression tests, particularly at the inte-
gration or system level, are significantly harder to automate
because they have complex requirements on the environment
in which the tests execute. For instance, they might require
running database servers, administrative privileges, services
on external machines or specific network topologies. This is

especially a concern for distributed systems and system-level
software. Consider for instance the following motivating
examples used in this paper:

• OpenSSH is an implementation of the Secure Shell
protocol that allows users to securely log in on remote
systems. One component is the program sshd, the
secure shell server daemon, which accepts connections
from the SSH client program ssh, handles authentica-
tion, starts a shell under the requested user account, and
so on. A test of the daemon must run with super-user
privileges on Unix (i.e. as root) because the daemon
must be able to change its user identity to that of the
user logging in. It also requires the existence of several
user accounts.

• Quake 3 Arena is a multiplayer first-person shooter
video game. An automated regression test of the multi-
player functionality must start a server and a client and
verify that the client can connect to the server success-
fully. Thus, such a test requires multiple machines. In
addition, the clients (when running on Linux) require a
running X11 server for their graphical user interfaces.

• Transmission is a Bittorrent client, managing down-
loads and uploads of files using the peer-to-peer Bit-
torrent protocol. Peer-to-peer operation requires that
a running Bittorrent client is reachable by remote
Bittorrent clients. This is not directly possible if a client
resides behind a router that performs Network Address
Translation (NAT) to map internal IP addresses to a
single external IP address. Transmission clients there-
fore automatically attempt to enable port forwarding in
routers using the UPnP-IGD (Universal Plug and Play
Internet Gateway Device) protocol. A regression test for
this functionality therefore requires a network topology
consisting of a IGD-enabled router, a client “behind”
the router, and a client on the outside. The test succeeds
if the second client can connect to the first through the
router.

Thus, each of these tests requires special privileges, sys-
tem services, external machines, or network topologies. This
makes them difficult to include in an automated regression
test suite: as these are typically started from (say) a Makefile
on a developer’s machine prior to checking in changes,

or on a continuous build system, it is important that they
are self-contained. That is, the test suite should set up the
complete environment that it requires. Without this property,
test environments must be set up manually. For instance, we
could manually set up a set of (virtual) machines to run the
Transmission test suite, but this is laborious and inflexible.
As a result, such tests tend to be done on an ad hoc,
semi-manual basis. For example, many major system Unix
packages (e.g. OpenSSH, the Linux kernel or the Apache
web server) do not have automated test suites.

In this paper, we describe an approach to make such tests
as easy to write and execute as conventional tests that do
not have complex environmental dependencies. This opens
a whole class of automated regression tests to developers.
In this approach, a test declaratively specifies the environ-
ment necessary for the test, such as machines and network
topologies, along with an imperative test script. From the
specification of the environment, we can then automatically
build and instantiate virtual machines (VMs) that implement
the specification, and execute the test script in the VMs.

We achieve this goal by expanding on our previous work
on NixOS, a Linux-based operating system distribution [1],
which in turn builds on the purely functional package
manager Nix [2]. In NixOS, the entire operating system –
system packages such as the kernel, server packages such
as Apache, end user packages such as Firefox, configuration
files in /etc, boot scripts, and so on – is built from source
from a specification in what is in essence a purely functional
“Makefile”. (We give an overview of the relevant concepts in
Nix and NixOS in Section II.) The fact that Nix builds from
a purely functional specification means that configurations
can easily be reproduced.

The latter aspect forms the basis for this paper. In a normal
NixOS system, the configuration specification is used to
build and activate a configuration on the local machine.
In Section III, we show how these specifications can be
used to produce the environment necessary for running a
single-machine test. We also describe techniques that allow
space and time-efficient instantiation of VMs. In Section IV,
we extend this approach to networks of VMs. We discuss
various aspects and applications of our work in Section V,
including distributed code coverage analysis and continuous
build systems. We have applied our approach to several real-
world scenarios; we quantify this experience in Section VI.
We describe related work in Section VII.

II. BACKGROUND: NIX AND NIXOS

In our approach, virtual machines are specified in the Nix
expression language, and built using the purely functional
package manager Nix. Furthermore, the operating system
instances that we build from the specifications are instances
of NixOS, a Linux distribution based on Nix. In this section
we give a brief overview of Nix and NixOS.

A. Nix

For the purposes of this paper, Nix [2] (http://nixos.org/)
can be seen as a purely functional “Make”. That is, like
Make [3] and many other build tools, it performs build
actions on the basis of a declarative specification of a graph
of actions and their dependencies, but unlike Make, the
specification is given in a lazy, purely functional language
– the Nix expression language. This allows much more
powerful abstractions to be expressed. Moreover, Nix stores
the results of build actions in a way such that they cannot
interfere with each other, e.g. that the results of multiple
invocations of a function do not overwrite each other: the
output of a build step – or derivation – is stored under a
unique path such as

/nix/store/q325djkc1ivlfyzan22197dc62gbq04z-firefox-3.5

where q325djkc1ivl... is a cryptographic hash of the inputs
of the derivation, such as sources, compilers, libraries and
build scripts.

The fundamental operation in the Nix expression language
is the built-in function derivation, which takes as argument
a set of name/value pairs, or attributes:

derivation {
name = "foo";
builder = "${bash}/bin/sh";
args = ["-c" "echo Hello $who > $out"];
who = "world";

}

A derivation describes the invocation of a command (usually
a shell script) that must produce output under a path in the
Nix store. The derivation is built by executing a program,
whose path and command-line arguments are specified in the
attributes builder and args, respectively. The other attributes
are passed to the builder as environment variables. Attribute
values can be (lists of) strings or other derivations. The latter
denote the dependencies of the current derivation. When
building a derivation, its dependencies are built first. The
path of each dependency’s output in the Nix store is placed
in the corresponding environment variable. Strings can also
contain references to other derivations, enclosed in ${...}.
These are replaced by the derivation’s output path in the
Nix store.

For instance, if we evaluate the derivation above, first the
derivation denoted by the variable bash (not shown here) is
built, resulting in a store path like /nix/store/49ndfiqrlc9b...-
bash-4.0-p17. Then the present derivation is built, with
the environment variable who set to world. Nix passes the
intended location of the output in the Nix store, computed
by hashing the input attributes, through the environment
variable out. Thus, the derivation above will write the string
Hello world to a path such as /nix/store/6dsdb0j20n3b...-foo.

A derivation can build anything, as long as it is pure,
i.e. depends only on its explicitly defined inputs, and pro-
duces output under the path denoted by the environment

rec {
httpd = stdenv.mkDerivation {

name = "apache-httpd-2.2.13";
src = fetchurl {

url = http://.../httpd-2.2.13.tar.bz2;
md5 = "8d8d904e7342125825ec70f03c5745ef";

};
buildInputs =

[perl apr aprutil pcre openssl];
configureFlags =

"--enable-mods-shared=all ...";
};

apr = stdenv.mkDerivation {
name = "apr-1.3.8"; ...

};

stdenv.mkDerivation = args: derivation {
builder = ...

’’
PATH=${gcc}/bin:${coreutils}/bin:...
tar xf ${args.src}
./configure --prefix=$out \

${args.configureFlags}
make
make install

’’; ...
};
...

}

Figure 1. pkgs.nix: Nix expression to build Apache

variable out. Nix is primarily intended as a deployment
tool – a package manager. Thus derivations are typically
large steps that build entire packages. Figure 1 shows an
example of a Nix expression to build the Apache web server.
The language construct rec { ... } defines a set of variable
bindings that can refer to each other, e.g. httpd refers to apr
(the derivation that builds the Apache runtime package).

The derivation httpd shows the use of function abstractions
to capture common build patterns: it calls the function
stdenv.mkDerivation, which performs a build of a standard
Unix-style package (namely, unpack the source, run an
Autoconf configure script, run make to build, and finally
make install to install the package under $out). Functions
are defined using the syntax arg: body. Functions can also
pattern-match on attribute sets: a function {arg1, ..., argn}:
body must be called with an attribute set containing the
named attributes. Ellipses can be used in the argument list
to denote that additional attributes are to be ignored.

We can build Apache from the command line as follows:

$ nix-build pkgs.nix -A httpd

Here pkgs.nix denotes the expression in Figure 1. Nix will
recursively begin to build the dependencies of Apache, such
as perl, apr and gcc. This is a source deployment model, but
as an optimisation, Nix will automatically download pre-
built store paths from repositories on the Internet if they are
available. The result of building Apache on the Nix store is

/nix/store
snws5xld6iyx...-apache-httpd-2.2.13

bin
httpd
apachectl

rl384gzsay47...-apr-1.3.8
lib

libapr-1.so.0.3.8
nqapqr5cyk4k...-glibc-2.9

lib
ld-linux.so.2
libc.so.6

...

Figure 2. Partial closure of Apache in the Nix store

{ config, pkgs, ... }:
{

services.httpd.enable = true;
services.httpd.documentRoot = "/www-root";
services.xserver.enable = true;
services.desktopManager.kde4.enable = true;
environment.systemPackages = [pkgs.firefox];

}

Figure 3. NixOS configuration module

seen in Figure 2.
There is a large distribution of Nix expressions, the Nix

Packages collection, that contains almost 2500 packages, and
supports a variety of operating systems.

B. NixOS

Nix has been used to build a Linux distribution,
NixOS [1]. NixOS uses Nix to build the entire system from
a specification in the Nix expression language – not just
software packages. All static parts of the system – packages,
the kernel, boot scripts, scripts to manage system services,
configuration data, and so on – are built by Nix derivations.
In fact, there is a single top-level derivation, that, when
built, causes all static parts of the system to be built as
dependencies. The practical advantages of such a purely
functional approach to system configuration management are
that upgrading the system is safe (since the old configuration
in the Nix store is not overwritten) and reliable (since due to
purity it does not rely on the previous state of the system),
we can always roll back to previous configurations, and we
can deterministically rebuild a configuration.

NixOS has a declarative configuration model. The Nix
expressions that constitute NixOS are organised into mod-
ules that together build the system. NixOS currently con-
sists of around 125 modules, each implementing some part
of the system (e.g. building the boot scripts, the Apache
configuration, or the X11 GUI environment). In addition,
the end-user configuration of a NixOS machine is also
specified as a module. Figure 3 shows an example of a

NixOS module specifying the high-level configuration of
a system. It states that the system should run Apache to
serve files in the directory /www-root, have a graphical
user interface running the KDE desktop environment, and
provide the Firefox web browser to users. Other modules
compute values that depend on this configuration. For in-
stance, the values of the attributes services.httpd.enable and
services.httpd.documentRoot are used by another module –
the Apache web server module – to determine whether to
generate a script to start and manage Apache, as well as the
contents of its configuration file httpd.conf.

The basic structure of a NixOS module is:

{ config, pkgs, ... }:

{ ... configuration values ... }

That is, a module is a function that accepts at least two
arguments: config, which contains the full system configura-
tion, and pkgs, which contains the Nix Packages collection
for convenience. For instance, the value pkgs.httpd is the
derivation that builds the Apache web server. The system
configuration config is computed by calling every NixOS
module and merging the attribute sets of configuration values
returned by each. The result of the merge is passed back
as the config function argument to each module. (This is
possible because the Nix expression language is lazy.)

Thus each module contributes values to the set config
and can use values defined by other modules. Most con-
figuration values are system options relevant to end users,
but others are “computed” values that are derived from
other configuration values. For instance, the value of the
attribute build.system.kernel is a derivation that builds the
Linux kernel. The entire system is built by the attribute
build.system.toplevel, whose value is a derivation that has all
other parts of the system as dependencies. Thus, the follow-
ing command builds the entire operating system, including
all packages, scripts, configuration files and system services:

$ nix-build /etc/nixos/nixos \
-A config.build.system.toplevel

The important property here is that NixOS provides us with a
way to deterministically and automatically build a complete
operating system environment, with all its dependencies,
from a declarative specification. (NixOS’s other principal
features, such as the ability to perform reliable upgrades or
roll back changes, are not relevant here.) As we shall see in
the next section, we can define other “top-level” derivations
that instantiate virtual machines from a configuration, and
extend the single-machine specifications such as the one in
Figure 3 to networks of machines.

III. SINGLE-MACHINE TESTS

By instantiating virtual machines from NixOS system
configurations, developers can concisely specify the environ-
ment necessary for a integration or system test, even if such

let openssh = stdenv.mkDerivation { ... }; in
makeTest {

machine =
{ config, pkgs, ... }:
{ users.extraUsers =

[{ name = "sshd"; home = "/var/empty"; }
{ name = "bob"; home = "/home/bob"; }

];
};

testScript = ’’
$machine→succeed(

"${openssh}/bin/ssh-keygen " .
"-f /etc/ssh/ssh_host_dsa_key",

"${openssh}/sbin/sshd -f /dev/null",
"mkdir -m 700 /root/.ssh /home/bob/.ssh",
"${openssh}/bin/ssh-keygen " .

"-f /root/.ssh/id_dsa",
"cp /root/.ssh/id_dsa.pub " .

"/home/bob/.ssh/authorized_keys");
$machine→waitForOpenPort(22);
$machine→succeed("${openssh}/bin/ssh " .

"bob\@localhost ’echo \$USER’")
eq "bob\n" or die;

’’;
}

Figure 4. openssh.nix: Specification of an OpenSSH regression test

tests require special privileges or running system services.
After all, inside a virtual machine, we can do any actions that
would be dangerous or not permitted on the host machine.
We first address single-machine tests; in the next section,
we extend this to networks of machines.

Figure 4 shows an implementation of the OpenSSH re-
gression test described in Section I. It consists of two parts:
a declarative specification of the machine in which the test
is to be performed (the attribute machine), and an imperative
test script (testScript). The machine specification is very
simple: all that we need for the test beyond a basic NixOS
machine is the existence of two user accounts (sshd for the
SSH daemon’s privilege separation feature, and bob as a
test account for logging in).

The test script is a Perl script running on the host
that performs operations in the guest using a number of
primitives. For instance, succeed executes shell commands
in the guest (as root) and aborts the test if they fail, while
waitForOpenPort waits until the guest is listening on the
specified TCP port. The OpenSSH test script creates an SSH
host key (required by the daemon to allow clients to verify
that they are connecting to the right machine), starts the
daemon, creates a public/private key pair, add the public
key to Bob’s list of allowed keys, waits until the daemon
is ready to accept connections, and logs in as Bob using
the private key. Finally, it verifies that the SSH session did
indeed log in as Bob and signals failure otherwise.

The function makeTest applied to machine and testScript
evaluates to two attributes: vm, a derivation that builds a
script that starts a NixOS virtual machine matching the

specification in machine; and test, a derivation that depends
on vm, runs its script to start the VM, and then executes
testScript. This means that the following command performs
the OpenSSH regression test:

$ nix-build openssh.nix -A test

That is, it builds the OpenSSH package as well as a complete
NixOS instance with its hundreds of dependencies. For
interactive testing, a developer can also do:

$ nix-build openssh.nix -A vm
$./result/bin/run-vm

(The call to nix-build leaves a symbolic link result to the
output of the vm derivation in the Nix store.) This starts
the virtual machine on the user’s desktop, booting a NixOS
instance with the specified functionality.

Two important practical advantages of our approach are
that the implementation of the VM requires no root privi-
leges and is self-contained (openssh.nix and the expressions
that build NixOS completely describe how to build a VM
instance automatically). These properties allow such tests to
be included in an automated regression test suite.

Virtual machines are built by a NixOS module qemu-
vm.nix that defines a configuration value system.build.vm,
which is a derivation to build a shell script that starts the
NixOS system built by system.build.toplevel in a virtual
machine. We use QEMU/KVM (http://www.linux-kvm.org/),
a modified version of the open source QEMU processor
emulator that uses the hardware virtualisation features of
modern CPUs to run VMs at near-native speed. An important
feature of QEMU over most other VM implementations
is that it allows VM instances to be easily started and
controlled from the command line. This includes the fully
automated starting, running and stopping of a VM in a
derivation. Furthermore, QEMU provides special support
for booting Linux-based operating systems: it can directly
boot from a kernel and initial ramdisk image on the host
filesystem, rather than requiring a full hard disk image with
that kernel installed. (The initial ramdisk in Linux is a
small filesystem image responsible for mounting the real
root filesystem.) For instance, the system.build.vm derivation
generates essentially this script:

${pkgs.qemu_kvm}/bin/qemu-system-x86_64 -smb /
-kernel ${config.boot.kernelPackages.kernel}
-initrd ${config.system.build.initialRamdisk}
-append "init=${config.system.build.bootStage2}
systemConfig=${config.system.build.toplevel}"

The system.build.vm derivation does not build a virtual
hard disk image for the VM, as is usual. Rather, the initial
ramdisk of the VM mounts the Nix store of the host through
the network filesystem CIFS (the -smb / option above);
QEMU automatically starts a CIFS server on the host to
service requests from the guest. This is a crucial feature: the
closure of a system is hundreds of megabytes in size at the
least, so to build such an image every time we reconfigure

the VMs would be very wasteful in time and space. Thus,
rebuilding a VM after a configuration change usually takes
only a few seconds.

The VM start script does create an empty ext3 root
filesystem for the guest at startup, to hold mutable state such
as the contents of /var or the system account file /etc/passwd.
Thanks to sparse allocation of blocks in the virtual disk
image, image creation takes only a few seconds. NixOS’s
boot process is self-initialising, so at boot time it initialises
all state needed to run the system. For interactive use, the
filesystem is preserved across restarts of the VM, saved in
the image file ./hostname.qcow2.

QEMU provides virtualised network connectivity to VMs.
The VM has a network interface, eth0, that allows it to talk
to the host. The guest has IP address 10.0.2.15, QEMU’s
virtual gateway to the host is 10.0.2.2, and the CIFS server is
10.0.2.4. This feature is implemented entirely in user space:
it requires no root privileges.

The test script executes commands on a VM by connect-
ing to TCP port 514 on the guest, on which a root shell is
listening. (The remotely accessible root shell is provided
by a NixOS module added to the machine configuration
by makeTest. It does not exist in normal use.) We patched
QEMU to allow TCP ports on the guest to be connected to
Unix domain sockets [4] in the host filesystem rather than
TCP ports on the host. This is important for security: we do
not want anybody other than the test script connecting to the
port. The use of a Unix domain socket rather than a port also
means that any number of makeTest derivations can execute
in parallel, without fear of clashing port assignments. These
features are important for continuous build environments,
where any number of builds may execute concurrently.

IV. DISTRIBUTED TESTS

Many typical system tests are distributed: thus they re-
quire multiple machines to execute. Therefore a natural
extension of the declarative machine specifications in the
previous section is to specify entire networks of machines,
including their topologies.

Figure 5 shows a small automated test for Quake 3
Arena. As described in Section I, it verifies that clients can
successfully join a game running on a non-graphical server.
Here makeTest is called with a nodes argument instead of a
single machine. This is a set specifying all the machines in
the network; each attribute is a NixOS configuration module.
In this case, it specifies a network of two machines: server,
which automatically starts a Quake server daemon, and
client, which runs an X11 graphical user interface and has
the Quake client installed, but otherwise does nothing. The
attribute test returned by makeTest evaluates to a derivation
that executes the VMs in a virtual network and runs the
given test suite. The test script uses additional test primitives,
such as waitForJob (which waits until the given system

makeTest {
nodes =

{ server =
{ config, pkgs, ... }:
{ jobs.quake3Server =

{ startOn = "startup";
exec =

"${pkgs.quake3demo}/bin/quake3"
+ " +set dedicated 1"
+ " +set g_gametype 0"
+ " +map q3dm7 +addbot grunt"
+ " 2> /tmp/log";

};
};

client =
{ config, pkgs, ... }:
{ services.xserver.enable = true;

environment.systemPackages =
[pkgs.quake3demo];

};
};

testScript = ’’
startAll;
$server→waitForJob("quake3-server");
$client→waitForX;
$client→succeed(

"quake3 +set name Foo +connect server &");
sleep 40;
$server→succeed(

"grep ’Foo.*entered the game’ /tmp/log");
$client→screenshot("screen.png");

’’;
}

Figure 5. Specification of a Quake client/server regression test

service has started successfully) and screenshot (which takes
a screenshot of the virtual display of the VM).

The test script in the example first starts all machines and
waits until they are ready. This speeds up the test as it boots
the machines in parallel; otherwise they are only booted on
demand, i.e., when the test script performs an action on the
machine. It then executes a command on the client to start a
graphical Quake client and connect to the server. The client
then does nothing (except possibly getting blown up by the
bots spawned by the server). After a while, we verify on
the server that the client did indeed connect. The derivation
will fail to build if this is not the case. Finally, we make a
screenshot of the client to allow visual inspection of the end
state, if desired.

GUI testing is a notoriously difficult subject [5]. The point
here is not to make a contribution to GUI testing techniques
per se, but to show that we can easily set up the infrastructure
needed for such tests. In the test script, we can run any
desired automated GUI testing tool.

The virtual machines can talk to each other because they
are connected together into a virtual network. Each VM has
a network interface eth1 with an IP address in the private
range 192.168.1.n assigned in sequential order by makeTest.
(Recall that each VM also has a network interface eth0 to

nodes = {
tracker =

{ config, pkgs, ... }:
{ environment.systemPackages =

[pkgs.transmission pkgs.bittorrent];
services.httpd.enable = true;
services.httpd.documentRoot = "/tmp";

};
router =

{ config, pkgs, ... }:
{ environment.systemPackages =

[iptables miniupnpd];
virtualisation.vlans = [1 2];

};
client1 =

{ config, pkgs, nodes, ... }:
{ environment.systemPackages = [transmission];

virtualisation.vlans = [2];
networking.defaultGateway = nodes.router

.config.networking.ifaces.eth2.ipAddress;
};

client2 =
{ config, pkgs, ... }:
{ environment.systemPackages = [transmission];
};

};

Figure 6. Network specification for the Transmission regression test

communicate with the host.) QEMU propagates any packet
sent on this interface to all other VMs in the same virtual
network. The machines are assigned hostnames equal to the
corresponding attribute name in the model, so the machine
built from the server attribute has hostname server.

The Quake test has a trivial network topology: all ma-
chines are on the same virtual network. The test of the port
forwarding feature in the Transmission Bittorrent client (de-
scribed in Section I) requires a more complicated topology:
an “inside” network, representing a typical home network
behind a router, and an “outside” network, representing the
Internet. The router should be connected to both networks
and provide Network Address Translation (NAT) from the
inside network to the outside. Machines on the inside
should not be directly reachable from the outside. Thus,
we cannot do this with a single virtual network. To support
such scenarios, makeTest can create an arbitrary number of
virtual networks, and allows each machine specification to
declare in the option virtualisation.vlans to what networks
they should be connected.

Figure 6 shows the specification of the machines for the
Transmission test. It has two virtual networks, identified
as 1 (the “outside” network) and 2 (the “inside”). There
are four machines: router is connected to both, client1 is
connected to 2, while tracker and client2 are connected to
1. (If virtualisation.vlans is omitted, it defaults to 1.) The
tracker runs the Apache web server to make torrent files
available to the clients. The configuration further specifies
what packages should be installed on what machines, e.g.,
the router needs the iptables and miniupnpd packages for its

testScript = ’’
Enable NAT on the router and start miniupnpd.
$router→succeed(

"iptables -t nat -F", ...
"miniupnpd -f ${miniupnpdConf}");

Create the torrent and start the tracker.
$tracker→succeed(

"cp ${file} /tmp/test",
"transmissioncli -n /tmp/test /tmp/test.torrent",
"bittorrent-tracker --port 6969 &");

$tracker→waitForOpenPort(6969);

Start the initial seeder.
my $pid = $tracker→background(

"transmissioncli /tmp/test.torrent -w /tmp");

Download from the first (NATted) client.
$client1→succeed("transmissioncli " .

"http://tracker/test.torrent -w /tmp &");
$client1→waitForFile("/tmp/test");

Bring down the initial seeder.
$tracker→succeed("kill -9 $pid");

Now download from the second client.
$client2→succeed("transmissioncli " .

"http://tracker/test.torrent -w /tmp &");
$client2→waitForFile("/tmp/test");

’’;

Figure 7. Test script for the Transmission regression test

NAT and UPnP-IGD functionality.
The test, shown in Figure 7, proceeds as follows. We first

initialise NAT on the router. We then create a torrent file on
the tracker and start the tracker program, a central Bittorrent
component that keeps track of the clients that are sharing
a given file, on port 6969. Also on the tracker we start the
initial seeder, a client that provides the initial copy of the file
so that other clients can obtain it. We then start a download
on the client behind the router and wait until it finishes.
If Transmission and miniupnpd work correctly in concert,
the router should now have opened a port forwarding that
allows the second client to connect to the first client. To
verify that this is the case, we shut down the initial seeder
and start a download on the second client. This download
can only succeed if the first client is reachable through the
NAT router.

Each virtual network is implemented as a separate QEMU
network; thus a VM cannot send packets to a network
to which it is not connected. Machines are assigned IP
addresses 192.168.n.m, where n is the number of the
network and m is the number of the machine, and have
Ethernet interfaces connected to the requested networks. For
example, the router will have interfaces eth1 with IP address
192.168.1.3 and eth2 with address 192.168.2.3, while the
first client will only have an interface eth1 with IP address
192.168.2.1. The test infrastructure provides operations to
simulate events such as network outages or machine crashes.

V. DISCUSSION

Declarative model: To what extent do we need the
properties of Nix and NixOS, in particular the fact that
an entire deployable operating system environment is built
from source from a specification in a single formalism,
and the purely functional nature of the Nix store? There
are many tools to automate deployment of machines. For
instance, Red Hat’s Kickstart tool installs RPM-based Linux
systems from a textual specification and can be used to create
virtual machines automatically, with a single command-line
invocation [6].

However, there are many limitations to such tools:
• Having a single formalism that describes the construc-

tion of an entire network from sources makes hard
things easy, such as building part of the system with
coverage analysis. In a tool such as Kickstart, the binary
software packages are a given; we cannot modify the
build processes of those packages.

• For testing in virtual machines, it is important that
VMs can be built efficiently. With Nix, this is efficient
because the VM can use the host’s Nix store. With
other package managers, that is not an option because
the host filesystem may not contain the (versions of)
packages that a VM needs. One would also need to be
root to install packages on the host, making any such
approach undesirable for automated test suites.

• For automatic testing, one needs a formalism to de-
scribe the desired configurations. In NixOS this is
already given: it is what users use to describe regular
system configurations. In conventional Unix systems,
the configuration is a result of many “unmanaged”
modifications to system configuration files (e.g. in /etc).
Thus, given an existing Unix system, it is hard to
distill the “logical” configuration of a system (i.e.,
specification in terms of high-level requirements) from
the multitude of configuration files.
Generality: The network specifications described in

this paper build upon NixOS: they build NixOS operating
system instances. This obviously limits the generality of our
current implementation: a test that must run on a Windows
machine cannot be accommodated. In this sense, it shows
an “ideal” situation, in which entire networks of machines
can be built from a purely functional specification. Nixpkgs
does contain functions to build virtual machines for Linux
distributions based on the RPM or Apt package managers,
such as Fedora and Ubuntu. These could be supported in
network specifications, though they would be harder to
configure since they are not declarative.

It is worth noting that the Nix package manager itself
is portable across a variety of operating systems, and the
generation of virtual machines works on any Linux host
machine (and probably other operating systems supported
by QEMU). Thus, the interactive or automated tests in

Section IV can very well be run on (say) an Ubuntu Linux
system. The fact that the guest OS is NixOS is usually fine
for automated regression test suites, since many test cases do
not care about the specific brand of guest Linux distribution.

Distributed coverage analysis: A declarative specifica-
tion of a network and an associated test suite makes it easy
to perform a distributed code coverage analysis. Again, we
make no contributions to the technique of coverage analysis
itself; we improve its deployability. First, the abstraction
facilities of the Nix expression language make it easy to
specify that parts of the dependency graph of a large system
are to be compiled with coverage instrumentation (or any
other form of build-time instrumentation one might want
to apply). Second, by collecting coverage data from every
machine in a test run of a virtual network, we get more
complete coverage information. Consider for instance, a typ-
ical configuration of the Subversion revision control system:
clients run the Subversion client software, while a server
runs a Subversion module plugged into the Apache web
server to provide remote access to repositories through the
WebDAV protocol. These are both built from the Subversion
code base. If a client performs a checkout from a server,
different paths in the Subversion code will be exercised on
the client than on the server. The coverage data on both
machines should be combined to get a full picture.

We can add coverage instrumentation to a pack-
age by setting the configuration value nixpkgs.config.-
packageOverrides. This value is a function that takes the
original contents of the Nix Packages collection as an
argument, and returns a set of replacement packages:

nixpkgs.config.packageOverrides = pkgs: {
subversion = pkgs.subversion.override {

stdenv = pkgs.addCoverageInstrumentation
pkgs.stdenv;

};
};

The original Subversion package, pkgs.subversion, contains
a function, override, that allows the original dependencies of
the package to be overriden. In this case, we pass a modified
version of the standard build environment (stdenv) that
automatically adds the flag --coverage to every invocation
of the GNU C Compiler. This causes GCC to instrument
object code to collect coverage data and write it to disk.
Most C or C++-based packages can be instrumented in this
way, including the Linux kernel.

The test script automatically collects the coverage data
from each machine in the virtual network at the conclusion
of the test, and writes it to $out. A function makeReport then
combines the coverage data from each virtual machine and
uses the lcov tool [7] to make a set of HTML pages showing
a coverage report and each source file decorated with the
line coverage. For example, we have built a regression test
for the Subversion example with coverage instrumentation
on Apache, Subversion, Apr, Apr-util and the Linux kernel.

Figure 8 shows a small part of the distributed coverage
analysis report resulting from the test suite run. The line
and function coverage statistics combine the coverage from
each of the four machines in the network.

One application of distributed coverage analysis is to
determine code coverage of large systems, such as entire
Linux distributions, on system-level tests (rather than unit
tests at the level of individual packages). This is useful for
system integrators, such as Linux distributors, as it reveals
the extent to which test suites exercise system features.
For instance, the full version of the coverage report in
Figure 8 readily shows which kernel and Apache modules
are executed by the tests, often at a very specific level: e.g.,
the ext2 filesystem does not get executed at all, while ext3
is used, except for its extended attributes feature.

Continuous builds: The ability to build and execute a
test with complex dependencies is very valuable for contin-
uous integration. A continuous integration tool (e.g. Cruise-
Control) continuously checks out the latest source code of
a project, builds it, runs tests, and produces a report [8]. A
problem with the management of such tools is to ensure that
all the dependencies of the build and the test are available on
the continuous build system (e.g., a database server to test a
web application). In the worst case, the administrator of the
continuous build machines must install such dependencies
manually. By contrast, the single command

$ nix-build subversion.nix -A report

causes Nix to build or download everything needed to pro-
duce coverage report for the Subversion web service test: the
Linux kernel, QEMU, the C compiler, the C library, Apache,
the coverage analysis tools, and so on. This automation
makes it easy to stick such tests in a continuous build system.
In fact, there is a Nix-based continuous build system, Hydra
(http://hydra.nixos.org), that continuously checks out Nix
expressions describing build tasks from a revision control
systems, builds them, and makes the output available through
a web interface.

VI. EVALUATION

We have created a number of tests1 using the virtual
machine-based testing technique described in this section.
These are primarily used as regression tests for NixOS:
every time a NixOS developer commits a change to NixOS
or Nixpkgs, our continuous integration system rebuilds the
tests, if necessary. The tests are the following:

• Several single-machine tests, e.g. the OpenSSH test,
and a test for the KDE desktop environment that builds
a NixOS machine and verifies that a user can success-
fully log into KDE and start several applications.

1The outputs of these tests can be found at http://hydra.nixos.org/jobset/
nixos/trunk/jobstatus. The Nix expressions are at https://svn.nixos.org/repos/
nix/nixos/trunk/tests.

Figure 8. Part of the distributed code coverage analysis report for the Subversion web service

• A two-machine test of an Apache-based Subversion
service, which performs HTTP requests from a client
machine to create repositories and user accounts on
the server through the web interface, and executes
Subversion commands to check out from and commit
to repositories. It is built with coverage instrumentation
to perform a distributed coverage analysis.

• A four-machine test of Trac, a software project man-
agement service [9] involving a PostgreSQL database,
an NFS file server, a web server and a client.

• A four-machine test of a load-balancing front-end (re-
verse proxy) Apache server that sits in front of two
back-end Apache servers, along with a client machine.
It uses test primitives that simulate network outages to
verify that the proxy continues to work correctly if one
of the back-ends stops responding.

• A three-machine variant of the Quake 3 test in Figure 5.
• The four-machine Transmission test in Figure 6.
• Several tests of the NixOS installation CD. An ISO-

9660 image of the installation CD is generated and
used to automatically install NixOS on an empty vir-
tual hard disk. The function that performs this test is
parametrised with test script fragments that partition
and format the hard disk. This allows many different
installation scenarios (e.g., “XFS on top of LVM2 on
top of RAID 5 with a separate /boot partition”) to be
expressed concisely.
The installation test is a distributed test, because the
NixOS installation CD is not self-contained: during
installation, it downloads sources and binaries for pack-
ages selected by the user from the Internet, mostly
from the NixOS distribution server at http://nixos.org/.
Thus, the test configuration contains a web server that
simulates nixos.org by serving the required files.

For a continuous test to be effective, it must be timely: the
interval between the commit and the completion of the test
must be reasonably short. Table I shows the execution time
and memory consumption for the tests listed above, averaged
over five runs. The execution time is the elapsed wall time
on an idle 4-core Intel Core i5 750 host system with 6 GiB
of RAM running 64-bit NixOS. The memory consumption
is the peak additional memory use compared to the idle
system. (The host kernel caches were cleared before each

Test # VMs Duration (s) Memory (MiB)
empty 1 34.6 169
openssh 1 59.9 336
kde4 1 98.1 450
subversion 2 386.2 456
trac 4 154.4 962
proxy 4 74.6 639
quake3 3 89.9 706
transmission 4 110.3 696
installation 2 436.6 883

Table I
TEST RESOURCE CONSUMPTION

test run by executing echo 3 > /proc/sys/vm/drop caches.)
All VMs were configured with 384 MiB of RAM, though
due to KVM’s para-virtualised “balloon” driver the VMs
typically use less host memory than that. The test empty
starts a single machine and shuts down immediately.

Table I shows that the tests are fast enough to execute
from a continuous build system. We have made no effort
to optimise the KVM/QEMU instances, so the tests can
certainly be made cheaper. For instance, since we create
many similar virtual machine instances, it is beneficial to
share pages with identical contents between VMs [10].

VII. RELATED WORK

Most work on deployment of distributed systems takes
place in the context of system administration research.
Cfengine [11] maintains systems on the basis of a declarative
specification of actions to be performed on each (class
of) machine. Stork [12] is a package management system
used to deploy virtual machines in the PlanetLab testbed.
These and most other deployment tools have convergent
models [13], meaning that due to statefulness, the actual
configuration of a system after an upgrade may not match
the intended configuration. By contrast, NixOS’s purely
functional model ensures congruent behaviour: apart from
mutable state, the system configuration always matches the
specification.

Virtualisation does not necessarily make deployment eas-
ier; apart from simpler hardware management, it makes it
harder, since without proper deployment tools, it simply
leads to more machines to be managed [14].

MLN [15], a tool for managing large networks of VMs,
has a declarative language to specify arbitrary network

topologies. It does not manage the contents of VMs beyond
a templating mechanism.

Our VM testing approach currently is only appropriate
for relatively small virtual networks. This is usually suffi-
cient for regression testing of typical bugs, since they can
generally be reproduced in a small configuration. It is not
appropriate for scalability testing or network experiments
involving thousands of nodes, since all VMs are executed
in the same derivation and therefore on the same host.
However, depending on the level of virtualisation required
for a test, it is possible to use virtualisation techniques that
scale to hundreds of nodes on a single machine [16].

There is a growing body of research on testing of dis-
tributed systems; see [17, Section 5.4] for an overview. How-
ever, the deployment and management of test environments
appears to be a somewhat neglected issue. An exception
is Weevil [18], a tool for the deployment and execution
of experiments in testbeds such as PlanetLab. We are not
aware of tools to support the synthesis of VMs in automatic
regression tests as part of the build processes of software
packages.

VIII. CONCLUSION

In this paper, we have shown a method for synthesizing
virtual machines from declarative specifications to perform
integration or system tests. This allows such tests to be
easily automated, an essential property for regression testing.
It enables developers to write integration tests for their
software that would otherwise require a great deal of manual
configuration, and would likely not be done at all.

Acknowledgments: This research is supported by
NWO-JACQUARD project 638.001.208, PDS: Pull Deploy-
ment of Services. We wish to thank the contributors to
Nixpkgs and NixOS, in particular Nicolas Pierron, who
implemented NixOS’s module system. We thank Armijn
Hemel for his input on the Transmission example.

REFERENCES

[1] E. Dolstra and A. Löh, “NixOS: A purely functional Linux
distribution,” in ICFP 2008: 13th ACM SIGPLAN Intl. Conf.
on Functional Programming. ACM, Sep. 2008.

[2] E. Dolstra, E. Visser, and M. de Jonge, “Imposing a memory
management discipline on software deployment,” in Proc.
26th Intl. Conf. on Software Engineering (ICSE 2004). IEEE
Computer Society, May 2004, pp. 583–592.

[3] S. I. Feldman, “Make—a program for maintaining computer
programs,” Software—Practice and Experience, vol. 9, no. 4,
pp. 255–65, 1979.

[4] W. R. Stevens and S. A. Rago, Advanced Programming in
the UNIX Environment, 2nd ed. Addison-Wesley, Jun. 2005.

[5] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving
GUI-directed test scripts,” in ICSE ’09: 31st Intl. Conf. on
Software Engineering. Los Alamitos, CA, USA: IEEE
Computer Society, 2009, pp. 408–418.

[6] Red Hat, Inc., Red Hat Enterprise Linux 5 Virtualization
Guide, 4th ed. Red Hat, Inc., 2009.

[7] P. Larson, N. Hinds, R. Ravindran, and H. Franke, “Improving
the Linux Test Project with kernel code coverage analysis,” in
Proceedings of the 2003 Ottawa Linux Symposium, Jul. 2003.

[8] M. Fowler and M. Foemmel, “Continuous integration,” http:
//www.martinfowler.com/articles/continuousIntegration.html,
accessed 11 August 2005.

[9] Edgewall Software, “Trac – integrated SCM & project man-
agement,” http://trac.edgewall.org/, 2009.

[10] G. Miłoś, D. G. Murray, S. Hand, and M. A. Fetterman,
“Satori: Enlightened page sharing,” in 2009 USENIX Annual
Technical Conference. Berkeley, CA, USA: USENIX, 2009,
pp. 1–15.

[11] M. Burgess, “Cfengine: a site configuration engine,” Comput-
ing Systems, vol. 8, no. 3, 1995.

[12] J. Cappos, S. Baker, J. Plichta, D. Nyugen, J. Hardies,
M. Borgard, J. Johnston, and J. H. Hartman, “Stork: package
management for distributed VM environments,” in LISA’07:
Proceedings of the 21st conference on Large Installation
System Administration Conference. Berkeley, CA, USA:
USENIX, 2007, pp. 1–16.

[13] S. Traugott and L. Brown, “Why order matters: Turing equiv-
alence in automated systems administration,” in Proceedings
of the 16th Systems Administration Conference (LISA ’02).
USENIX, Nov. 2002, pp. 99–120.

[14] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern,
and V. Bala, “Opening black boxes: Using semantic informa-
tion to combat virtual machine image sprawl,” in Proceedings
of the Fourth ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments. ACM, 2008, pp.
111–120.

[15] K. Begnum, “Managing large networks of virtual machines,”
in LISA’06: Proc. of the 20st Conference on Large Installation
System Administration Conference. Berkeley, CA, USA:
USENIX, 2006, pp. 205–214.

[16] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,
T. Stack, K. Webb, and J. Lepreau, “Large-scale virtualization
in the Emulab network testbed,” in 2008 USENIX Annual
Technical Conference. Berkeley, CA, USA: USENIX, 2008,
pp. 113–128.

[17] M. J. Rutherford, A. Carzaniga, and A. L. Wolf, “Evaluating
test suites and adequacy criteria using simulation-based mod-
els of distributed systems,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 452–470, 2008.

[18] Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L. Wolf,
“Automating experimentation on distributed testbeds,” in Pro-
ceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering. ACM, Nov. 2005, pp.
164–173.

