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Abstract
Software written in one language often needs to construct sen-
tences in another language, such as SQL queries, XML output, or
shell command invocations. This is almost always done using un-
hygienic string manipulation, the concatenation of constants and
client-supplied strings. A client can then supply specially crafted
input that causes the constructed sentence to be interpreted in an
unintended way, leading to an injection attack. We describe a more
natural style of programming that yields code that is impervious
to injections by construction. Our approach embeds the grammars
of the guest languages (e.g., SQL) into that of the host language
(e.g., Java) and automatically generates code that maps the embed-
ded language to constructs in the host language that reconstruct the
embedded sentences, adding escaping functions where appropriate.
This approach is generic, meaning that it can be applied with rela-
tive ease to any combination of host and guest languages.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Security

Keywords Injection Attacks, Syntax Embedding, StringBorg

1. Introduction
In this paper we propose using syntax embedding to prevent injec-
tion vulnerabilities in a language-independent way. Injections form
a very common class of security vulnerabilities [16]. Software writ-
ten in one language often needs to construct sentences in another
language, such as SQL, XQuery, or XPath queries, XML output, or
shell command invocations. This is almost always done using un-
hygienic string manipulation, whereby constant and client-supplied
strings are concatenated to form the sentence. Consider for exam-
ple the following piece of server-side Java code that authenticates
a remote HTTP user against a database, where getParam() returns a
string supplied by the user, for instance through a form field:

String userName = getParam("userName");
String password = getParam("password");
String query = "SELECT id FROM users "

+ "WHERE name = '" + userName + "' "
+ "AND password = '" + password + "'";
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if (executeQuery(query).size() == 0)
throw new Exception("bad user/password");

On testing, this code may appear to work correctly, but it is vul-
nerable to a widely known security flaw. For instance, if the user
specifies as the password the string ' OR 'x' = 'x, then the con-
structed SQL query will be

SELECT id FROM users WHERE
name = '...' AND password = '' OR 'x' = 'x'

The condition in the WHERE-clause is now a tautology. Hence, the
password check will always succeed and the user will be granted
access, which is an example of an injection attack. The essence
of the attack [25] is that the programmer intended the variable
password to serve as an SQL string literal, but a specially crafted
value like the one above causes it to be parsed as something else.

Injection attacks are one of the largest classes of secu-
rity problems, possibly surpassing even buffer overflows1. SQL-
constructing code is more likely to be vulnerable than not [14].
But injection attacks occur in many contexts other than SQL query
construction in Java, as Figure 1 shows. SQL injections happen in
any host language that dynamically computes SQL queries, such as
PHP. Other guest languages are equally vulnerable: programs that
build XPath queries have the same problem. Likewise, many CGI
scripts call the Unix shell with user-supplied data in an unhygienic
way that allows arbitrary commands to be executed on the server.
They also often send unhygienically constructed HTML to the
client, enabling cross-site scripting (XSS) attacks that cause inap-
propriate content to be presented to a user, or malicious JavaScript
code to be executed.

Injections can be prevented by escaping external input. For SQL
string literals, this means that occurrences of the ’-character must
be doubled. Thus, the query construction above would become
... + escapeSQLStr(password) + ..., where escapeSQLStr performs the
expected escaping. However, it is easy to forget to do so, and
neither the compiler nor the runtime system can flag the omission
of escape calls. There have been a number of proposals to detect
unhygienically constructed sentences at runtime (e.g. [25, 14, 18])
or using static analysis (e.g. [20, 29]).

A better solution, from a security perspective, is to use an
API to build the sentence. Such an API can ensure that injections
are impossible by construction (e.g. [22]). For instance, the query
above could be expressed using some imaginary SQL-constructing
API: SQL query = new Select(..., new Eq(new Var("password"), new
Str(password))). The constructor for string literals Str then takes care

1 A scan of 168 SecurityFocus vulnerability reports updated in the period
April 10–14, 2006 revealed at least 53 injection vulnerabilities: 24 SQL
injections, 28 HTML injections, and 1 shell injection. By contrast, there
were at least 30 buffer overflows and other memory-related problems.



$username = $_GET['username'];
$q = "SELECT * FROM users " .

"WHERE username = '" . $username . "'";
executeSQL($q);

SQL in PHP: SQL injection

String e = "/users[@name='" + name + "' and " +
"@password='" + password + "']";

factory.newXPath().evaluate(e, doc);

XPath in Java: XPath injection

$command = "svn cat \"file name\" -r" . $rev;
system($command);

Shell calls in PHP: command injection

String topic = getParam("topic");
String query = "SELECT body FROM comments " +

"WHERE topic = '" + topic + "'";
ResultSet results = executeQuery(query);
foreach (String body : results)
println("<tr><td>" + body + "</td></tr>");

XML and SQL in Java: XSS vulnerability

Figure 1. Unhygienic sentence construction

of escaping. Furthermore, the type system ensures well-formedness
of the sentence. But this style of programming is unattractive. It is
inconvenient because it creates a cognitive gap between the pro-
grammer and the syntax provided by the guest language, which is
after all a domain-specific language (DSL) designed to make cer-
tain kinds of tasks easier to express. Also, such APIs may not be
available and may differ for each language. Finally, documentation
and examples are expressed in terms of the concrete syntax of the
DSL, not an API.

The approach that we propose in this paper is to combine the
security of using an API with the conceptual ease of string manipu-
lation. We do this by embedding the syntax of the guest languages
into the syntax of the host language, a technique pioneered by meta-
programming [4, 30, 27, 7]. For instance, the SQL-in-Java example
above becomes

SQL q = <| SELECT id FROM users WHERE
name = ${userName} AND password = ${password} |>;

if (executeQuery(q.toString()).size() == 0) ...

That is, the syntax of SQL is embedded directly into the syntax of
Java expressions, using the quotation <|...|> to construct SQL
code. Likewise, the antiquotation ${...} embeds Java expressions
into SQL to allow composition of SQL code. A preprocessor called
an assimilator translates code written in this combined language
into plain Java code that calls an API generated from the grammar
of the guest language.

Of course, the idea of embedding a language is not new. For in-
stance, the SQL-92 standard [1] already defines an embedding of
SQL in host languages such as C. However, these solutions have
always been specific to a combination of guest and host languages,
requiring considerable work to support other combinations. Exam-
ples of other combinations are SQL in a different host language,
XPath, SQL, and Shell together in the same host language, or XPath
together with a scripting language in Java. The core contribution of
this paper is that we show that modular, scannerless parsing for-
malisms allow such embeddings to be created generically. That is,
by specifying the grammar of a guest language, we can embed this
language in all supported host languages; and by specifying the

$username = $_GET['username'];
$q = <| SELECT * FROM users

WHERE username = ${$username} |>;
executeSQL($q->toString());

SQL in PHP injection

XPath e = {- /users[@name=${name} and
@password=${password}] -};

factory.newXPath().evaluate(e.toString(), doc);

XPath in Java injection

$command = <| svn cat "file name" -r${$rev} |>;
system($command->toString());

Shell calls in PHP injection

String topic = getParam("topic");
SQL query = <| SELECT body FROM comments

WHERE topic = ${topic} |>;
ResultSet results = executeQuery(query.toString());
foreach (String body : results)
println(<tr><td>${body}</td></tr>.toString());

XML and SQL in Java injection

Figure 2. Hygienic sentence construction

grammar of a new host language along with an API generator, the
new host immediately allows embedding of all guest languages.

Figure 2 shows examples of hygienic, secure code correspond-
ing to the unhygienic, insecure examples in Figure 1. Since we have
grammars for guest languages such as SQL, XPath, and shell, and
host languages such as Java and PHP, any combination of embed-
dings becomes immediately available: e.g., SQL in Java, SQL in
PHP, XPath in Java, shell in PHP, and XML and SQL in Java.

Contributions The contributions of this paper are as follows.

• We describe a comprehensive solution to injection attacks that
prevents them by construction. This style of programming is
also more convenient than both string manipulation and high-
level APIs. Preventing injections by construction is a funda-
mentally more secure approach than detecting injections at run-
time, as the latter is still vulnerable to denial-of-service attacks
based on second-order injections.

• The approach is generic in that it can be easily adapted to
new host and guest languages. Like a resourceable and retar-
getable compiler architecture, it takes effort Θ(N + M) rather
than Θ(N ×M) to support N guest languages in M host lan-
guages. This is in contrast to previous work on injections, which
addresses specific language combinations (e.g. [22, 11, 13, 12,
14, 15]).

• This genericity is accomplished through a novel application of
language embedding [8], which is in turn enabled by modu-
lar, scannerless parsing. Genericity is further reached by au-
tomatically generating the underlying APIs from the context-
free grammars of the guest languages. Finally, the assimilator
that translates guest language fragments into API calls is fully
generic and can be applied to every host language and arbi-
trary combinations of guest languages. As a result, no meta-
programming is required for adding a new guest language to
the system.

• The well-formedness of constructed guest language sentences
can be ensured at runtime and the well-formedness of the guest
fragments is ensured statically.
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Figure 3. Overview of the StringBorg approach

• Antiquotations in meta-programming can easily lead to ambi-
guities. For instance, in an SQL quotation <| SELECT id FROM
names ${where} |>, the antiquote ${where} can have several syn-
tactic sorts (such as a WHERE- or ORDER BY-clause). Usually,
the programmer is required to explicitly disambiguate such an-
tiquotations. We present a novel technique for dealing with am-
biguity that relieves the programmer from this burden. This
technique makes the previous work in meta-programming on
embedding languages usable for programmers.

We have implemented this approach in a prototype called String-
Borg (after the MetaBorg method [8]), which is available as open
source software at http://www.stringborg.org/. StringBorg is imple-
mented using Stratego/XT [28], which provides the Stratego lan-
guage for implementing program transformations, and a collection
of tools (XT) for the development of transformation systems, based
on the modular syntax definition formalism SDF [26].

2. Approach
In the previous section we saw how injection attacks are made
possible by composition of sentences using string concatenation.
In this section we introduce the design and implementation of the
StringBorg approach.

2.1 Overview
The core problem underlying injection attacks is that a sentence
(e.g. an SQL query) is parsed after its construction to a structure
that does not correspond to the intended grammatical structure [25].
Unfortunately, in code using unhygienic string concatenation, the
intended structure is implicit. Hence, the structure of the resulting
query cannot easily be compared to the intended structure. The
solution is to make the grammatical structure explicit so that any
resulting sentence can be guaranteed to conform to it. StringBorg
accomplishes this by parsing the guest language fragments as a
pre-processing step and generating code to construct the sentences
in a structured way. This ensures well-formedness of the resulting
sentence and automatic escaping of antiquoted strings. StringBorg
constructs sentences structurally according to the productions of
the context-free grammar of the guest language.

Figure 3 provides an overview of StringBorg. The syntax of the
guest language (e.g. SQL, Shell) is embedded in the syntax of the
host language (e.g. Java, PHP). The programmer uses this com-
bined syntax for writing programs. The assimilator uses the com-
bined syntax definition to parse source files and transforms the em-
bedded guest code to invocations of an API that manages the com-
position, escaping, and serialization of the guest code sentences.
The API is produced fully automatically using an API generator

module SQL exports

context-free syntax 1

"SELECT" Id* "FROM" Id Where? -> Query
"WHERE" Expr -> Where
Expr "=" Expr -> Expr {left}
String -> Expr
Id -> Expr

lexical syntax 2

[A-Za-z]+ -> Id
[A-Za-z0-9\ \"\-\;] -> Char
"'" ("''" | Char)* "'" -> String

Figure 4. Syntax definition for subset of SQL

that given a grammar of a guest language and an optional escap-
ing definition produces an API in a specified host language. The
generated API prevents injection attacks by always checking lexi-
cal values against the syntax for the lexical category as defined in
the syntax definition. The generated API also automatically applies
escaping rules to strings that are spliced into guest code using an
antiquotation.

Language independence StringBorg combines the convenience
of string concatenation and concrete syntax with the safety of
an API. The main contribution of StringBorg is its genericity in
the guest and host languages. That is, it is not restricted to a
specific combination of a guest and host language. The language
independence is not just methodological, rather the implementation
of (1) support for a guest language is independent of the supported
host languages, (2) the generator is easily retargetable to different
host languages, and (3) the assimilator is generic in the guest
language and almost generic in the host language. The grey boxes
in Figure 3 indicate syntax definitions necessary to add support
for a new host or guest language. The grey ellipses indicate code
templates that need to be written to add support for a new host
language to the assimilator and generator. These tools are written
in the Stratego program transformation language [28]. We will
review the language independence of StringBorg in more detail in
Section 2.5.

2.2 Syntax embedding and parsing
Throughout this paper, we will use a small subset of SQL to il-
lustrate StringBorg, but we stress that neither the approach nor the
implementation are specific to SQL. StringBorg uses the modular
syntax definition formalism SDF [26] to define the syntax of host
and guest languages. Figure 4 shows the SDF grammar for our sub-
set of SQL2. The SDF module defines the context-free syntax (at
point 1) of simple queries and expressions consisting of string lit-
erals, identifiers and equality comparisons. Furthermore, it defines
the lexical syntax 2 of string literals. A syntax definition mainly
consists of productions of the form s1 . . .sn -> s0, declaring that
a phrase of the syntactical category s0 can be formed by concate-
nating phrases of categories s1 . . . sn. Note that SDF definitions
are similar to EBNF with the distinction that (1) productions are
written left-to-right with the ‘generating’ non-terminal on the right-
hand side, and (2) both lexical and context-free syntax are defined
in the same formalism.

The use of concrete syntax for a guest language requires the em-
bedding of the guest language in the syntax of the host language.
Figure 5 illustrates how this is achieved in SDF. First, the syntax
definition for SQL-Java imports the syntax definitions of Java and
SQL 3. Next, it adds new productions for quotations, i.e. for using
the guest language syntax in the host language, and antiquotations,
i.e. to escape from the guest language to the host language. In this

2 The prototype provides a complete syntax definition for SQL.



module SQL-Java imports Java SQL 3 exports
context-free syntax

"<|" Query "|>" -> Expr[[Java]] {quote("SQL")} 4

"<|" Expr "|>" -> Expr[[Java]] {quote("SQL")} 5

"${" Expr[[Java]] "}" -> Expr {antiquote} 6

"${" Expr[[Java]] "}" -> String {antiquote} 7

Figure 5. Syntax embedding of SQL in Java

String topic = getParam("topic");
SQL e = <| topic = ${topic} |>;
SQL q = <| SELECT body FROM comments WHERE ${e} |>

Figure 6. Composing SQL queries in Java

case, the module defines quotations for SQL queries 4 and expres-
sions 5 and antiquotations for SQL expressions 6 and strings 7. Note
that Expr is the non-terminal for SQL expressions imported from the
module SQL, while Expr[[Java]] is the non-terminal for Java expres-
sions imported from Java.

Figure 6 shows how quotations and antiquotation are used to
compose guest sentences at runtime. The first quotation of an SQL
expression uses an antiquotation to splice a Java String into the
expression. At this point, the Java String will be escaped using
the escaping rules for SQL. The SQL expression itself is spliced
into the final SQL query. In this way, guest sentences can be
composed at runtime not just by inserting string values, but also
by using antiquotations for arbitrary syntactical categories of the
guest language.

Parsing Parsing source files that use a combination of a host
language and various guest languages is a challenge for many
parsing techniques. In our approach, the parser is generated fully
automatically from the combined syntax definition, in this case the
module in Figure 5. The problem with most mainstream parsing
techniques is that grammars cannot easily be composed. Grammars
for LR or LL parser generators cannot be composed in general,
since LR and LL grammars are not closed under composition [17].
Furthermore, lexical analyzers do not compose, since the lexical
analysis of combinations of languages requires the recognition of
a different lexical syntax for different locations of a source file,
i.e. the lexical syntax is context-sensitive. For example, a guest
language often has different keywords, operators, and literals than
the host language. Lexical analyzers are usually generated from a
definition of a set of tokens, which cannot be unified into a single
set of tokens for analyzing a combination of languages.

StringBorg is based on the SDF syntax definition formalism,
which is implemented using scannerless Generalized-LR parsing.
The parser is scannerless, which means that no separate lexical
analyzer is used. (The lexical and context-free sections of SDF
modules are desugared into a single context-free grammar.) In
this way, the differences in lexical syntax between the host and
guest languages, such as different keywords, operators, and literals,
become a non-issue. The parser is based on the Generalized-LR
algorithm, which supports the full class of context-free grammars,
which is closed under composition. Since SDF has a feature rich
module system, we can embed languages in other languages in a
very natural way. For an extensive discussion of the issues involved
in parsing syntactical language embeddings we refer to [8, 6].

Ambiguities In applications of syntactical embeddings, ambigu-
ities are an ubiquitous problem. For example, the antiquotation
${topic} in Figure 6 can be interpreted as an SQL expression as well
as an SQL string, because the same antiquotation syntax is used for
both syntactic categories of the guest language, i.e. there is no way

public final class L {
8 private String string, Set symbols;
9 private L(String string, Set symbols) {...}

for each context-free production p : s1 . . . sn -> s0 :
10 public static L p(L arg1, . . . , L argn) {

for each argi where si is a lexical category :
if argi.symbols = {string} then

11 argi ← escape_si(argi)
12 if ! match(dfa(si), argi) then throw exception

if ∀1≤i≤n: si ∈ argi.symbols then
13 syms← {s0} else syms← /0
14 pp← unparse arg1, . . . , argn

return new L(pp, syms)
}

for each lexical category si:
15 public static L literal_si(String s) {

return new L(s, {si})
}

16 private static L escape_si(String s) {
pp← escape s according to the escaping definition
return new L(pp, {si})

}

17 public static L ambiguity(L arg1, . . . , L argm) {
18 pp← {argi.string | argi.symbols 6= /0}
19 syms←

⋃
1≤i≤m argi.symbols

20 return if |pp| = 1 then new L(pp, syms) else new L("", /0)
}

21 public static L lift(arg) {
return if arg is of type L then arg else new L(arg, {string})

}
}

Figure 7. API generation for Java-like languages

to syntactically distinguish the two antiquotations. In many appli-
cations, these ambiguities need to be resolved, either by requiring
the programmer to tag the quotations and antiquotations [4, 27]
with their syntactical category (e.g., $str{topic}), or by using a dis-
ambiguating typechecker to select the intended derivation [30, 7].
Both solutions are rather unappealing for StringBorg. Tagging re-
quires the programmer to be intimately familiar with the grammar
of the guest language, which seriously affects the usability. A spe-
cially crafted disambiguating typechecker would require substan-
tial work for every host language and would only be possible for
statically typed languages.

Fortunately, for well-formedness of guest sentences in String-
Borg, there is no need to know the exact syntactic category of all
values. It is sufficient to verify that the value of an antiquotation
actually syntactically ‘fits’ in the quotation into which it is spliced.
StringBorg employs Generalized-LR (GLR) parsing to preserve
the ambiguities by letting the GLR parser produce all alternative
derivations (i.e. a parse forest). In this way, the programmer does
not have to tag quotations and antiquotations and also the approach
is easy to implement for arbitrary host languages. In the next sec-
tion we discuss how the ambiguities are efficiently represented at
runtime by objects that can have multiple types, corresponding to
the possible syntactical categories.

2.3 API generation
StringBorg generates for a specific guest language an API that cov-
ers all aspects of constructing guest language strings. The API that



is generated for a guest language is responsible for preventing in-
jection attacks. That is, even without using the syntax embedding
and assimilator, the use of the API guarantees that injection attacks
cannot occur. The generated APIs have no runtime dependencies,
support ambiguities, and provide support for unparsing, escaping,
and checking of lexical values. The generator of the StringBorg
prototype comes with back-ends for PHP and Java. Figure 7 out-
lines in pseudocode the API that is generated for Java-like lan-
guages from the syntax definition of a guest language, for example
from the SQL syntax definition of Figure 4. The API generation for
other languages such as PHP follows a substantially similar struc-
ture and is straightforward to implement. In the pseudocode italic
for each loops are evaluated at generation-time to generate code for
each production or symbol of a grammar.

For a guest language L, a class L is generated, whose instances
(objects) represent sentences of L. Each object has two private
fields 8: its string representation and a set of syntactic symbols. The
class has no public constructors 9; instances of L can only be cre-
ated via static factory methods. For each context-free production
of the grammar, there is a corresponding static factory method 10

that constructs an L object. The formal parameters of this method
correspond to the list of symbols s1 . . . sn in the left-hand side of
the SDF production. For example, for the production Expr "=" Expr
-> Expr the method public static SQL newEquality (SQL arg1, SQL arg2)
is generated. newEquality is a symbolic name we use in the exam-
ples. The actual names of the factory methods are cryptographic
hashes of the productions. Literals used in the left-hand side of the
production, such as "=", are not passed to the factory methods.

The factory methods first apply automatic escaping to lexical
values 11 (Section 2.3.1) and check if the resulting strings match
the syntax of the lexical categories 12, using deterministic finite-
state automata (DFA). For each lexical category, an automaton is
generated from the regular grammar for this category in the syntax
definition. The automata are constructed using the BRICS Automa-
ton package [24]. For example, this check will result in an error if
a string with a newline is spliced into an SQL query, since SQL
strings do not allow newlines and SQL does not provide escaping
for newlines. The escaping rules are configurable in StringBorg,
for example the MySQL dialect uses different escaping rules that
do support newlines.

Next, the factory methods check if all the arguments of the
methods have the required symbol in their set of symbols 13. This
set of symbols represents the possible syntactical categories of the
L instance. For example, the factory method for an SQL Query
checks that the last argument has the symbol Where?. If one of the
arguments does not contain the required symbol, then the resulting
L instance will have an empty set of symbols, which means that it
is invalid. Note that this can only happen in antiquotations, since
the syntactical correctness of a literal guest code fragment implies
that all arguments will have the appropriate syntactical category in
their set of symbols. If this would not be the case, then a parse
error would have occurred. The construction of an L instance with
an empty set of symbols does not raise an exception because of
the requirement to support ambiguities (see Section 2.3.2). For the
same reason, L instances have a set of symbols, instead of just a
single one.

Finally, the factory methods reconstruct the sentences of the
guest language based on their arguments 14. The generator analyzes
the syntax definition of the guest language to generate the imple-
mentation of unparsing in the factory methods. The unparsers in-
sert minimal whitespace between the symbols. Note that the actual
construction of the string is hidden in the API and can be optimized
by lazy unparsing to create only a single string, after the required
interpretation has been determined.

conversion string -> String {
prefix "\'";
suffix "\'";
escape {
[\'] -> "\'\'"; }}

conversion string -> DoubleQuotedString {
escape {
[\<] -> "&lt;";
[\&] -> "&amp;";
[\"] -> "&quot;"; }}

Figure 8. SQL string and XML attribute value escaping definitions

2.3.1 Literals and escaping
Strings that are used to construct guest sentences can originate
literally from guest code templates or can be spliced in using
an antiquotation. These two cases have to be handled differently,
because literal strings are already escaped, whereas spliced strings
are not. For literal strings, the generated API contains methods 15

to construct an L instance of symbol s for each lexical category
s. Antiquoted strings are first lifted 21 to an L instance with a
symbol that indicates that this is an unescaped string. Such an L
instance is later used as an argument of a factory method, where
it will be escaped according to the escaping rules of the lexical
category. The escaping rules that need to be applied depend on
the lexical category, so the strings are not immediately escaped in
the lift method. In both cases, the L instances are checked by the
factory methods using an DFA for the lexical category, whether
they are literal or antiquoted strings. Lexical L instances are never
used directly, but are only used to construct other L instances. If
they are used directly, then an exception will be thrown, because
this error could be a vulnerability.

The implementation of escaping 16 cannot be derived from the
syntax definition, which defines the syntax of the escapes, but
not the corresponding characters. Hand-written code for escaping
strings is not an option, since preferably the escaping should be
host language independent: if escaping functions have to be imple-
mented for every particular combination of a guest and host lan-
guage, then more effort than Θ(N + M) is required to support N
guest languages in M host languages. To make the implementation
generic, the API generator accepts an escaping definition, which is
a small domain-specific language. Figure 8 shows two examples of
escaping definitions. For SQL string literals single quotes have to
be escaped using a single quote. For example, for the string ' OR
1=1 the escapeString method produces the safe String ''' OR 1=1'.
For XML attribute values within double quotes, several characters
have to be replaced with an entity reference. The conversion for
XML attribute values does not define a prefix and suffix because
this embedding uses antiquotation inside double-quoted attribute
values (string interpolation). The escape rules are optional in the
configuration file, so plain conversions from host strings to lexical
values can be defined as well.

2.3.2 Ambiguities
The API supports ambiguities in quotations and antiquotations by
unifying the alternative representations to a single L instance. This
is possible in StringBorg because it does not matter syntactically
which alternative is intended (i.e. they represent the same string).
The generated method ambiguity 17 takes an arbitrary number of L
arguments and composes them into a single L instance. The symbol
set of the resulting L instance is the union of all the symbols of the
alternatives 19. The string of the new L instance can be the string
of an arbitrary well-formed L instance (they are all the same), but
to make this precise, we still test the cardinality 20 of the set of
strings 18. Note that some alternatives may have no symbols at
all, which means that they are not well-formed. The filtering that



needs to be performed in ambiguity is the reason for not throwing
an exception earlier: to enable filtering of the alternatives, it is
necessary to temporarily allow L instances that do not have any
valid syntactical category. The toString method throws an exception
when applied to such invalid L instances to guarantee that they are
not used to produce a guest sentence.

2.3.3 Retargetable API generation
The generator has been designed to be retargetable to different host
languages by separating the implementation in a generic front-end,
which produces an abstract representation of an API, and a host
language specific back-end. For each host language, code templates
need to be provided for generating automata, escaping, and pretty-
printing. For the Java and PHP back-ends the templates amount to
420 and 400 lines of code respectively.

To make the implementation of a new back-end as lightweight
as possible, the generator back-ends produces parse trees of the
host API, which can be unparsed to a source API without the need
for a pretty-printer for the host language. In this way, only a syntax
definition of the host language is required.

2.3.4 Programmer protection
In injection attacks, the user of the system is the person the sys-
tems needs be protected against. Yet, if an API is present, but pro-
grammers still use strings to ‘quickly’ compose a sentence, then a
potential enemy is the laziness of the programmer. In the case of
the generative Java APIs, the constructor of the L class is private,
ensuring that it is not possible to create valid L instances from raw
Java strings without the appropriate checks. Also, the L class is fi-
nal to disallow subclassing. This level of safety is not available in
all languages. Another issue is that access to the string-based API
for evaluating guest sentences is usually still available. The detec-
tion of classical string-based use of such a library does not require
complex static analysis. Arguments to the library interface should
get the string value of the guest program directly from the API, for
example executeQuery(q.toString()), where q is an instance of L.

2.4 Assimilation
The embedding of guest language syntax in the host language
syntax enables parsing of sources using the combined syntax. The
next step is to transform the quoted fragments to calls to the APIs
for the guest languages. This transformation is called assimilation,
as it assimilates the guest language into the host language [8]. As
an example of this transformation, Figure 9 shows a simple SQL
quotation in Java and PHP, a sketch of the parse tree, and the result
of assimilation. The sketch of the parse tree in Figure 9 presents
the productions (see Figure 4) in italic using symbolic names. The
argument of quote is an SQL fragment. The arguments of antiquotes
are pieces of literal Java code. The example leaves out many details
of the real parse tree format, which is a complete description of how
the productions of the syntax definition are applied to produce the
original source program, including literals, layout and comments.
The result of assimilation is a one-to-one mapping from the parse
tree to invocations of factory methods in the generated API. It
illustrates an ambiguity and the lifting of antiquoted strings to SQL.

The assimilator operates on the full parse tree of the source
program. Thus, the assimilator is layout preserving and like the API
generator does not require a pretty-printer for the host language.
The assimilator is fully generic in the guest language, i.e. there is
no guest language specific code at all. This is possible because all
the information about the guest language is already in the parse
tree and the mapping from the syntax definition to the API is fixed,
since the API is generated. This makes it easy to map the quoted
guest code to the factory methods, which correspond directly to
production applications.

SQL e = <| topic = ${topic} |>;

⇒ (parsing)

LocalVarDecStm (..., VarDec (Id ("e")
, quote (Equality (

IdExpr (Id ("topic"))
, amb([

StringExpr (antiquote (ExprName ("topic")))
, antiquote (ExprName ("topic"))
])))))

⇒ (assimilation)

SQL e = SQL.newEquality (
SQL.newIdExpr (SQL.newId (SQL.literalId ("topic")))

, SQL.ambiguity(
SQL.newStringExpr (SQL.lift(topic))

, SQL.lift(topic)))

$e = <| topic = ${$topic} |>;

⇒ (parsing)

Assign (Var ("e")
, quote (Equality (

IdExpr (Id ("topic"))
, amb([

StringExpr (antiquote (Var ("topic")))
, antiquote (Var ("topic"))
]))))

⇒ (assimilation)

$e = SQL::newEquality (
SQL::newIdExpr (SQL::newId (SQL::literalId ("topic")))

, SQL::ambiguity(
SQL::newStringExpr (SQL::lift($topic))

, SQL::lift($topic)))

Figure 9. Assimilation of SQL in Java and SQL in PHP

In the actual APIs generated by StringBorg, the names of the
factory methods are cryptographic hashes of the productions in-
stead of symbolic names such as newStringExpr. This ensures the
uniqueness of method names. Figure 5 shows that the productions
for quotations are annotated with the name of the guest language.
The assimilator uses this information to invoke methods of the ap-
propriate factory, i.e. SQL in this example. Hence, by design the
assimilator can deal with combinations of guest languages in a sin-
gle source file.

Similar to the API generator, the assimilator is split in a front-
end and a host language specific back-end. The front-end assim-
ilates the embedded guest code to an abstract language that de-
scribes the factory method invocations, ambiguities, quotations,
and antiquotations in a way that makes it trivial for the back-end
to generate host language specific code. Hence, the assimilator is
easy to retarget (for Java only 48 lines of code, for PHP 44).

2.5 Summary of language independence
The genericity of our approach is important for making the method
viable for practical use. Our goal is to make it possible to have
a market of guest language embeddings that can be used in any
host language and can be combined by users without any meta-
programming experience, just like programmers can already com-
bine arbitrary libraries in a single program. StringBorg is even more
generic: the implementation of a guest language is available to all
supported host languages. To summarize the effort required to im-
plement support for new guest and host languages:

• For adding a new guest language, no meta-programming is re-
quired. No pretty-printer for the guest language is necessary.
The assimilator is not modified to deal with a new guest lan-



guage. To add support for a new guest language, one must only
define its syntax, configure the escaping of literals, and define
the quotation and antiquotations, all in a host language indepen-
dent way.

• For adding a new host language, a syntax definition for the
language is required. For the API generator and assimilator,
only simple code templates need to be provided to their back-
ends. No pretty-printer for the host language is necessary.

• For a combination of guest languages in a host language, no ad-
ditional work is required. From the generic embeddings of the
guest languages a parser can be generated fully automatically.
The assimilator is designed to handle multiple embedded guest
languages and the API generator does not need to be applied to
combinations of guest languages: it is applied to their individual
syntax definitions.

3. Discussion
We have implemented StringBorg back-ends for the host languages
Java and PHP and experimented with several (combinations of)
guest languages: SQL, XPath, Shell, and XML. Our method guar-
antees by construction that injection attacks cannot occur, assum-
ing, of course, that the API generator is correct. For evaluation,
the usability of our method is more important: how difficult is it to
rewrite an existing application to use StringBorg? We extracted use-
cases of the patterns in which SQL queries and HTML responses
are typically constructed from a number of web applications avail-
able from gotocode.com. Both sentences that are constructed all at
once (i.e. in a single string-concatenating expression) and sentences
that are constructed dynamically are fully supported. Thanks to the
user-friendly support for ambiguities in StringBorg, the program-
mer does not need to learn disambiguation tags for quotations and
antiquotations.

3.1 Static versus dynamic typechecking
The StringBorg-generated API we have presented checks dynami-
cally if guest sentences are composed correctly. However, we have
also implemented a Java back-end that performs these checks stat-
ically by using the Java type system. In this back-end every syn-
tactical category of the guest language is represented by its own
class and these are used as the return and parameter types of fac-
tory methods. Static typechecking has two major disadvantages for
usability: (1) the programmer has to know all these syntactical cat-
egories and their mapping to types of the host language and (2) no
ambiguities are allowed, which makes the syntax embedding more
difficult to use. The advantage is that static checking provides more
static guarantees, but it is important to observe that this is not a se-
curity advantage. That is, both the statically and dynamically typed
back-ends guarantee statically that an injection attack cannot occur.
The dynamic or static typechecking only checks for programming
errors, not for problems with input provided by the user. The gen-
erated APIs will never throw an ‘injection attack exception’; the
exceptions that can occur are either related to illegal characters in
the input (e.g. the newline in SQL) or programming errors. The last
category of exceptions does not depend on particular inputs, but
only on execution paths, which are easier to detect using testing.

3.2 Prevented classes of injection attacks
A wide range of injection attack techniques are in use. Halfond et
al. have proposed a classification of SQL injection attacks [16]. For
example, attacks can be classified by injection mechanism or the
intent of the attack. We now discuss how our method deals with the
classes of injection attacks identified by Halfond et al.
Injection through user input is the mechanism of using specially
crafted user input to construct a query that has a different parse

tree then originally intended. StringBorg prevents these attacks by
checking the syntax of lexical values and automatic escaping of all
strings.
Injection through cookies differs from injection through user in-
put by exploiting input from cookies, which are sometimes naively
assumed to be controlled by a web application. StringBorg checks
and escapes all strings, irrespective of their origin, thus disabling
this injection mechanism.
Injection through server variables, such as HTTP headers, em-
ploys yet another origin of strings. These attacks are prevented
since StringBorg escapes all strings.
Second-order injection attacks indirectly perform the attack by
first introducing a malicious input in the system (e.g. database),
which is used later as the input of an affected query. Again, these at-
tacks are prevented since StringBorg checks and escapes all strings,
whether they originate directly from the user or not.
Tautology-based attacks use an injection mechanism to craft a
query where the condition always evaluates to true. StringBorg
prevents the mechanisms of injection attacks from being applied,
which implies that crafting tautologies is impossible.
Union query attacks are related to tautologies, but allow access
to different tables than the ones originally involved in the query.
Similar to tautology attacks, StringBorg prevents the mechanisms
that are used.
Piggy-backed queries are malicious queries added to be executed
in addition to the original query. Again, StringBorg prevents the
mechanisms that are used.
Illegal query attacks are used to trigger syntax, type or logical
errors. This often results in an error report that reveals informa-
tion about possible exploits. StringBorg only throws an exception
if an input string contains invalid characters that could not be es-
caped. StringBorg disables the construction of syntactically invalid
queries.

Thanks to the prevention of injections, methods for triggering
type and logical errors are disabled as well. The only exception
is an embedding that allows conversion of input strings to table
and column names (which is not the case in our embeddings). It
is advisable to disallow this conversion and only allow literal table
and column names. In general, allowing users to input identifiers
can introduce a plenitude of options for manipulating the intended
semantics of the constructed guest sentence.
Inference attacks are related to illegal query attacks. They can
be applied if a site is protected not to show error messages. By
observing the success or failure of queries, the setup of the database
can indirectly still be examined. The prevention of inference attacks
does not differ from illegal query attacks.
Stored procedure attacks are a class of all known attacks applied
to stored procedures. If stored procedures compose queries based
on user input, then the same method for structured construction
should be applied.
Alternate encoding attacks avoid detection and prevention of an
attack by concealing the actual query in a different syntax or char-
acter encoding, which tricks the detection and prevention tech-
niques into interpreting the query in a different way then the actual
processor of the guest language does. In all known embeddings,
StringBorg prevents encoding attacks since the encoding itself is
escaped and lexical strings are checked syntactically.

However, due to the genericity of our method, it is not guar-
anteed that encoding attacks are prevented for all guest languages.
For example, Java features Unicode escapes that can be used for
any input character, not just in string literals. If Java was used as a
guest language, then Java’s Unicode escapes can be used to termi-
nate a string literal and inject code. This is currently not caught by
our lexical checking, since the DFA does not unescape the Unicode
escape. The fundamental reason for this problem is that the current



set of definitions does not fully specify the language. This can be
solved in several ways. (1) The escape sequence can escaped. This
makes the escaping rules important for security, which was not the
case until now. (2) Unescaping rules could be defined next to es-
cape rules and applied before escaping and checking strings. (3)
The syntax definition of the guest language can be restricted not to
support Unicode escape sequences at all. (4) The syntax definition
formalism could be extended to support lexical escape sequences.

The use of unexpected character encodings (not escape se-
quences) is another mechanism to hide an attack. For example,
PostgreSQL was recently affected by an injection problem with
multibyte character encodings 3. This issue is host language spe-
cific and depends on the way strings are handled by the string data
types that are used. This is beyond the scope of prevention tech-
niques that check the syntax of queries.

3.3 External queries
Some applications use queries that are not composed and executed
directly in source code, but rather stored in files or written to a
database and executed later. The safety of our method is based
on the fact that injection attacks are impossible by construction.
To make this work, all queries executed by a system have to be
constructed, in one way or another, in a structured way. This applies
to external queries as well. If the external queries are constructed
by the program itself, then our method can be used: there is no
need to directly execute a query after constructing it. If other tools
are involved in the construction of the queries (potentially used by
attackers), then the same structured way of query composition has
to be used in these tools.

3.4 Generalized parsing techniques
Syntactic limitations StringBorg relies heavily on modular syn-
tax definition and parser generation, implemented by SDF and
scannerless Generalized-LR parsing. This requires the syntax of the
host as well as the guest language to be expressible in a context-
free grammar. Unfortunately, some languages do not have such
a context-free grammar. For example, SDF does not support lan-
guages with an indentation rule (Haskell, Python). A potential so-
lution to the problem of indentation rules is to parse these programs
using an ambiguous grammar or add basic features for context-
sensitive languages to the parser. The StringBorg assimilator al-
ready supports ambiguous syntax definition for the host language.

Error reporting For generalized parsing techniques to be ac-
cepted in production compilers, the quality of error messages
is most important. The current error reporting of scannerless
Generalized-LR parsing is rather Spartan; the parser only gives the
line and column numbers where parsing fails. Research on error re-
porting of scannerless and generalized-LR parsers is necessary to
make generalized parsing techniques applicable in production en-
vironments.

Efficient parser composition In the StringBorg prototype, a
parser needs to be generated for every combination of host and
guest languages. Parser generation is too expensive to do as part
of the compilation of the program that uses this combination of
languages, so parsers are currently generated separately. This is not
difficult to do, yet it has some impact on the ‘plugin experience’ of
StringBorg. To improve this, we expect to present parse table plug-
ins in future work, which enables efficient composition of scanner-
less generalized-LR parsers.

3 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2314

4. Related work
Injection attacks have attracted a great deal of attention in recent
years, and consequently there has been a substantial amount of
research in developing techniques to counter them. Our approach
differs from the work discussed below in either or both of two ways:

• It is generic over a large number of host and guest languages,
rather than being tied to a specific combination such as SQL in
Java.

• It prevents injections by construction rather than detecting them
in existing code.

We emphasize that the present work does not obviate the need
for static or dynamic analysis techniques, as they enable existing
programs written in a traditional style to be secured. The present
approach, on the other hand, provides a fundamentally safer way
to develop new programs that need to construct guest language
sentences.

Explicit escaping and filtering The standard response to injec-
tion attacks is to tell developers to either diligently escape all user-
supplied strings, or to filter out malicious inputs. Filtering can be
done by rejecting known bad inputs, an approach that is unlikely
to capture all bad inputs (see e.g. [21]); or by accepting only those
inputs that match a very specific “good” pattern, e.g., that contain
only certain safe characters. The latter approach has the disadvan-
tage that it may unduly restrict users, e.g., by not allowing user
names with apostrophes such as O’Brien). Both escaping and filter-
ing suffers from the fundamental flaw that they require develop-
ers to never forget to insert the appropriate code. As with buffer
overflows, relying on programmers to “get it right” every time is a
recipe for disaster.

APIs SQL DOM [22] makes SQL safe by hiding the SQL query
construction behind an API that ensures that string literals are prop-
erly escaped by construction. However, SQL DOM goes beyond
the API that we generate from the SQL grammar: it is not merely a
“static” API to build SQL abstract syntax trees, but rather is gener-
ated from a specific database schema. Thus, it can statically ensure
that all queries are well-typed with respect to that database schema.
Clearly, this is a valuable property. It is important to note, however,
that whether a query is ill-typed is in most cases not determined
by user input. If a query produced by some code path is well-typed
with respect to its schema for some input, then it is likely to be
well-typed for all inputs. This is not the case for the hygiene of
string concatenation: a concatenation that produces correct results
for some inputs may very well fail for others, namely those that
contain unescaped characters.

A somewhat similar approach is Safe Query Objects [11], which
allows queries to be defined in plain Java expressions, which are
compiled using OpenJava into the necessary JDO calls. This can
be viewed as embedding a convenient syntax for queries, namely
Java expressions, into a host language, which happens to be Java
also; the assimilation is the translation into JDO calls. Like SQL
DOM, HaskellDB [19], provides type safety with respect to the
database schema. This API can also ensure proper escaping. These
approaches have the downside of introducing a cognitive distance
from the SQL language, and are specific to a particular host lan-
guage and a domain of guest languages (namely query languages).

LINQ Syntactic hygiene is an important aspect of Haskell Server
Pages [23], Cω [5] and its spiritual successor LINQ. All three
provide XML literals, enabling XML output generation in a sound
way. The fact that the latter two provide XML literals and an SQL-
like query syntax to languages such as Visual Basic illustrates the
desire to have embedded syntax for output and query generation.
Similar to Safe Query Objects in OpenJava, LINQ allows host



expressions to be converted implicitly to an expression tree that can
be processed in arbitrary ways. LINQ is not extensible, however, in
that it is not possible to plug in the syntax of other guest languages.

Static analysis techniques JDBC Checker [13, 12] statically
checks that SQL queries built through string concatenation in Java
are type-correct. It does so by building a model of the ways in
which the query can be built through data-flow analysis, and then
comparing that against the database schema. While this work did
not address injection attacks, it should be possible to extend this ap-
proach to either discover those sites where escape functions should
be called, or modifying the code to add those calls automatically.
A tool that uses static analysis to find various kinds of injections is
described in [18]. Xie and Aiken [29] developed an interprocedural
static analysis algorithm for PHP and apply it to SQL injections.

Livshits and Lam [20] describe a general approach that allows
unsafe code to be identified through a specification of code patterns
for the sources of “tainted” data, consuming functions such as exe-
cuteQuery (“sinks”) which must not be reached by tainted data, and
propagators of tainted data (e.g., string concatenation functions).
However, the fact that tainted data can flow from a source to a sink
is only a security problem if the data is not validated, so user in-
spection may be necessary to determine whether an injection is in
fact possible.

All static analysis approaches require a substantial effort to
apply them to a different host language, due to, e.g., the complexity
in implementing the precise data flow semantics of the language.

Runtime detection techniques AMNESIA [14] statically builds
an automaton corresponding with the ways in which query strings
can be constructed. Nodes in the automaton are terminals in the
language, and special nodes representing external user input. At
runtime, each full SQL query is matched against the automaton.
In the case of an injection, the query will almost certainly not
be accepted by the automaton as additional terminals are present
that do not occur in the automaton. In general, any approach that
attempts to check for injections in string concatenating code cannot
be both sound and complete due to the undecidability of string
analysis [10], but the scenarios under which AMNESIA reports a
false negative are unlikely to occur in real code.

Any approach involving static analysis takes considerable effort
to port to another host language. For instance, JDBC Checker
and AMNESIA use the Java String Analysis library [10] to track
string concatenations. Implementing such a library for a different
language would be a non-trivial undertaking, much more difficult
than writing an SDF grammar and API generator rules for the
language.

WASP [15] prevents SQL injections by keeping track for each
character in a string whether it is “trusted” (e.g., originates from a
constant in the source). If SQL tokens containing untrusted charac-
ters contain unsafe characters (such as a ’), the query is rejected.
While WASP is very effective at preventing injections, it is not
trivial to port the taint-tracking implementation to other host lan-
guages.

SQLCHECK prevents injection attacks by wrapping user input in
special markers, e.g., (|s|). (A similar approach is described in [9].)
The grammar of the guest language is then augmented by accepting
the markers around certain symbols in the grammar, e.g, so that
it accepts (|’s’|)’ in SQL wherever string literals are accepted. An
injection attack would then fail to parse since in, e.g., ... WHERE
password = (|” OR ’x’ = ’x’|) there is no production that allows an
arbitrary condition inside the markers. The markers are assumed
to be special strings that the client cannot produce. If the client can
do so, an injection is still possible.

The weakness in SQLCHECK is its assumption that the client
will not be able to produce the magic marker symbols. The paper

argues that by choosing the markers as sufficiently long random
strings, the chance of a malicious client guessing the markers can
be minimised. However, it is tenuous to assume that markers will
not be leaked: for instance, web applications have an unfortunate
tendency to “echo” SQL queries to the user if an error occurs. Thus,
it may be quite easy for the user to trick the web application into
revealing its markers.

A more fundamental problem of runtime approaches such as
AMNESIA, WASP and SQLCHECK is that, at runtime, they can
only flag errors and prevent them from escalating into a full se-
curity compromise. But since there is no way to dynamically re-
cover from the error condition, a denial-of-service attack is still
possible. Consider for example the XSS-attack in Figure 1, where
a string containing XML injections is inserted in a database and
subsequently presented to each user. In this case, if the XML injec-
tion is first detected during page generation, no user will be able to
view the page anymore, receiving a server error instead. So in the
case of higher-order attacks, it is not enough to detect injections:
they must not be possible at all. In the hygienic approach, the mali-
cious string will be escaped according to the XML syntax and will
trigger neither an error nor a security problem.

SQL-specific techniques The SQL-92 standard [1] defines em-
beddings for various host languages, but the implementation
of these embeddings is highly specific to each host language.
Its equivalent of antiquotations is syntactically heavy, requiring
“shared variables” between the host and guest to be declared ex-
plicitly. Queries cannot be constructed dynamically (at least not
hygienically), which may explain why this approach is not widely
used.

Prepared statements allow an SQL query to be constructed
safely. A prepared statement contains placeholders (or dynamic pa-
rameter specifications) that are replaced hygienically by the SQL
query processor; e.g., SELECT * FROM users WHERE name = ? has
a single placeholder. Placeholders are an inconvenient antiquota-
tion mechanism, since the programmer must ensure that the argu-
ments in the SQL processor call match up with the placeholders,
which may be tricky in dynamically generated queries with a vari-
able number of placeholders. In addition, programmers frequently
abuse prepared statements and compute the prepared statement un-
hygienically, rather than passing a constant.

The use of stored procedures prevents injection attacks, pro-
vided that the stored procedure is called in a safe way [2]. Unfor-
tunately, as with prepared statements, stored procedures are some-
times called in an unhygienic way, negating the approach [3].

MetaBorg The method presented in this paper is an extended
application of our previous work on concrete object syntax, or
MetaBorg [8], which makes the use of libraries more convenient by
providing an embedded domain-specific syntax for using them. For
MetaBorg, we motivated the use of the scannerless Generalized-LR
algorithm for parsing embedded domain-specific languages and the
Stratego program transformation language for assimilation of the
embedded code to the host language. Compared to this earlier work,
the StringBorg method presented in this paper is more generic,
thanks to the independence of the support for guest and host lan-
guages. Also, the usability of embeddings has been improved con-
siderably by supporting ambiguities, which makes the method ap-
plicable for use by programmers without meta-programming ex-
perience. For StringBorg, the assimilation does not translate to an
existing API, but to the StringBorg API generated by the system
itself. This makes the assimilation generic for all embedded guest
languages. In that sense, this paper describes “identity assimila-
tions”: the embedded guest language and its underlying API are
simply used to reconstruct the embedded guest sentences as host
language strings, but in such a way that well-formedness is guar-



anteed. The existence of this identity mapping is what makes the
system generic and easy to extend with new guest languages. The
StringBorg API is generated automatically from the grammar of the
guest language and covers all aspects of generating strings for the
guest language.

5. Conclusion
As noted in the introduction, injection attacks are one of the largest
classes of security problems, possibly surpassing even buffer over-
flows. Modern programming languages already defend against the
latter; the work presented here protects against the former. The
main advantage over previous approaches is that it makes injec-
tions impossible by construction, and that it is generic — it is
not necessary to produce APIs and assimilators for each element
of the cross-product of host and guest languages {Java, C#, PHP,
Perl, . . .}×{SQL, JDOQL, HQL, EJBQL, OQL, XML, HTML,
XPath, XQuery, Shell, . . .}, but only to perform a relatively small
amount of work for each host and guest language.

Since different languages are good for different things, it is
important to help programmers plug them together. In the case
of dynamically generated sentences such as SQL queries or shell
invocations, the main challenge is to ensure that this plugging
happens in a grammatically well-formed way. Indeed, given the
interest in technologies such as LINQ, it appears clear that there
is a great deal of enthusiasm for embedding languages such as
SQL and XML. However, such embeddings are generally done in
a rather ad hoc way. It would be a good thing if the languages of
the future supported modularity “out of the box”. Modular syntax
definition makes it possible to accomplish this goal in an efficient
and principled way.
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