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1. Introduction

This thesis is about getting computer programs from one machine to another—and having
them still work when they get there. This is the problem of software deployment. Though
it is a part of the field of Software Configuration Management (SCM), it has not been a
subject of academic study until quite recently [169]. The development of principles and
tools to support the deployment process has largely been relegated to industry, system
administrators, and Unix hackers. This has resulted in a large number of often ad hoc
tools that typically automate manual practices but do not address fundamental issues in a
systematic and disciplined way.

This is evidenced by the huge number of mailing list and forum postings about de-
ployment failures, ranging from applications not working due to missing dependencies, to
subtle malfunctions caused by incompatible components. Deployment problems also seem
curiously resistant to automation: the same concrete problems appear time and again. De-
ployment is especially difficult in heavily component-based systems—such as Unix-based
open source software—because the effort of dealing with the dependencies can increase
super-linearly with each additional dependency.

This thesis describes a system for software deployment called Nix that addresses many
of the problems that plague existing deployment systems. In this introductory chapter I
describe the problem of software deployment, give an overview of existing systems and
the limitations that motivated this research, summarise its main contributions, and outline
the structure of this thesis.

1.1. Software deployment

Software deployment is the problem of managing the distribution of software to end-user
machines. That is, a developer has created some piece of software, and this ultimately has
to end up on the machines of end-users. After the initial installation of the software, it
might need to be upgraded or uninstalled.

Presumably, the developer has tested the software and found it to work sufficiently well,
so the challenge is to make sure that the software works just as well, i.e., the same, on the
end-user machines. I will informally refer to this as correct deployment: given identical
inputs, the software should behave the same on an end-user machine as on the developer
machine1.

This should be a simple problem. For instance, if the software consists of a set of files,
then deployment should be a simple matter of copying those to the target machines. In

1I’m making several gross simplifications, of course. First, in general there is no single “developer”. Second,
there are usually several intermediaries between the developer and the end-user, such as a system administra-
tor. However, for a discussion of the main issues this will suffice.
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1. Introduction

practice, deployment turns out to be much harder. This has a number of causes. These fall
into two broad categories: environment issues and manageability issues.

Environment issues The first category is essentially about correctness. The software
might make all sorts of demands about the environment in which it executes: that certain
other software components are present in the system, that certain configuration files exist,
that certain modifications were made to the Windows registry, and so on. If any of those
environmental characteristics does not hold, then there is a possibility that the software
does not work the same as it did on the developer machine. Some concrete issues are the
following:

• A software component is almost never self-contained; rather, it depends on other
components to do some work on its behalf. These are its dependencies. For correct
deployment, it is necessary that all dependencies are identified. This identification
is quite hard, however, as it is often difficult to test whether the dependency specifi-
cation is complete. After all, if we forget to specify a dependency, we don’t discover
that fact if the machine on which we are testing already happens to have the depen-
dency installed.

• Dependencies are not just a runtime issue. To build a component in the first place we
need certain dependencies (such as compilers), and these need not be the same as the
runtime dependencies, although there may be some overlap. In general, deployment
of the build-time dependencies is not an end-user issue, but it might be in source-
based deployment scenarios; that is, when a component is deployed in source form.
This is common in the open source world.

• Dependencies also need to be compatible with what is expected by the referring
component. In general, not all versions of a component will work. This is the case
even in the presence of type-checked interfaces, since interfaces never give a full
specification of the observable behaviour of a component. Also, components often
exhibit build-time variability, meaning that they can be built with or without certain
optional features, or with other parameters selected at build time. Even worse, the
component might be dependent on a specific compiler, or on specific compilation
options being used for its dependencies (e.g., for Application Binary Interface (ABI)
compatibility).

• Even if all required dependencies are present, our component still has to find them,
in order to actually establish a concrete composition of components. This is often
a rather labour-intensive part of the deployment process. Examples include setting
up the dynamic linker search path on Unix systems [160], or the CLASSPATH in the
Java environment.

• Components can depend on non-software artifacts, such as configuration files, user
accounts, and so on. For instance, a component might keep state in a database that
has to be initialised prior to its first use.

4



1.1. Software deployment

• Components can require certain hardware characteristics, such as a specific proces-
sor type or a video card. These are somewhat outside the scope of software deploy-
ment, since we can at most check for such properties, not realise them if they are
missing.

• Finally, deployment can be a distributed problem. A component can depend on
other components running on remote machines or as separate processes on the same
machine. For instance, a typical multi-tier web service consists of an HTTP server,
a server implementing the business logic, and a database server, possibly all running
on different machines.

So we have two problems in deployment: we must identify what our component’s re-
quirements on the environment are, and we must somehow realise those requirements in
the target environment. Realisation might consist of installing dependencies, creating or
modifying configuration files, starting remote processes, and so on.

Manageability issues The second category is about our ability to properly manage the
deployment process. There are all kinds of operations that we need to be able to perform,
such as packaging, transferring, installing, upgrading, uninstalling, and answering various
queries; i.e., we have to be able to support the evolution of a software system. All these
operations require various bits of information, can be time-consuming, and if not done
properly can lead to incorrect deployment. For example:

• When we uninstall a component, we have to know what steps to take to safely undo
the installation, e.g., by deleting files and modifying configuration files. At the same
time we must also take care never to remove any component still in use by some
other part of the system.

• Likewise, when we perform a component upgrade, we should be careful not to over-
write any part of any component that might induce a failure in another part of the
system. This is the well-known DLL hell, where upgrading or installing one applica-
tion can cause a failure in another application due to shared dynamic libraries. It has
been observed that software systems often suffer from the seemingly inexplicable
phenomenon of “bit rot,” i.e., that applications that worked initially stop working
over time due to changes in the environment [26].

• Administrators often want to perform queries such as “to what component does this
file belong?”, “how much disk space will it take to install this component?”, “from
what sources was this component built?”, and so on.

• Maintenance of a system means keeping the software up to date. There are many
different policy choices that can be made. For instance, in a network, system ad-
ministrators may want to push updates (such as security fixes) to all client machines
periodically. On the other hand, if users are allowed to administer their own ma-
chines, it should be possible for them to select components individually.

• When we upgrade components, it is important to be able to undo, or roll back the
effects of the upgrade, if the upgrade turns out to break important functionality. This

5



1. Introduction

requires both that we remember what the old configuration was, and that we have
some way to reproduce the old configuration.

• In heterogeneous networks (i.e., consisting of many different types of machines),
or in small environments (e.g., a home computer), it is not easy to stay up to date
with software updates. In particular in the case of security fixes this is an important
problem. So we need to know what software is in use, whether updates are available,
and whether such updates should be performed.

• Components can often be deployed in both source and binary form. Binary pack-
ages have to be built for each supported platform, and sometimes in several variants
as well. For instance, the Linux kernel has thousands of build-time configuration
options. This greatly increases the deployment effort, particularly if packaging and
transfer of packages is a manual or semi-automatic process.

• Since components often have a huge amount of variability, we sometimes want to
expose that variability to certain users. For instance, Linux distributors or system
administrators typically want to make specific feature selections. A deployment
system should support this.

1.2. The state of the art

Having seen some of the main issues in the field of software deployment, we now look at
some representative deployment tools. This section does not aim to provide a full survey
of the field; rather, the goal is to show the main approaches to deployment. Section 7.6 has
a more complete discussion of related work.

Package management is a perennial problem in the Unix community [2]. In fact, entire
operating system distributions rise and fall on the basis of their deployment qualities. It can
be argued that Gentoo Linux’s [77] quick adoption in the Linux community was entirely
due to the perceived strengths of its package management system over those used by other
distributions. This interest in deployment can be traced to Unix’s early adoption in large,
advanced and often academic installations (in contrast to the single PC, single user focus
in the PC industry in a bygone era).

Also, for better or for worse, Unix systems have traditionally insisted on storing com-
ponents in global namespaces in the file system such as the /usr/bin directory. This makes
management tools indispensable. But more importantly, modern Unix components have
fine-grained reuse, often having dozens of dependencies on other components. Since it
is not desirable to use monolithic distribution (as is generally done in Windows and Mac
OS X, as discussed below), a package management tool is absolutely required to support
the resulting deployment complexity. Therefore Unix (and specifically, Linux) package
management is what we will look at first.

RPM The most widely used Linux package management system is the Red Hat Package
Manager (RPM) [62], and as it is a good, mature tool it is instructive to look at it in some
detail. RPM is a low-level deployment tool: it installs and manages components, keeping
meta-information about them to prevent unsafe upgrades or uninstalls.
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1.2. The state of the art

Summary: Hello World program

Name: hello

Version: 1.0

Source0: %{name}-%{version}.tar.gz

%description

This program prints out "Hello

World".

%build

./configure --prefix=%{_prefix}

make

%install

make install

%files

/usr/bin/hello

/usr/share/man/man1/hello.1.gz

/etc/hello.conf

Figure 1.1.: Spec file for hello

Summary: Hello World GUI

Name: xhello

Version: 1.4

Source0: %name-%version.tar.gz

Requires: hello >= 1.0 1
Requires: XFree86

%description

This program provides a graphical

user interface around Hello.

%build

./configure --prefix=%_prefix

make

%install

make install

%files

/usr/bin/xhello

Figure 1.2.: Spec file for xhello

A software component is deployed by packaging it into an RPM package (or simply
RPM), which is an archive file that consists of the files that constitute the component, and
some meta-information about the package. This includes a specification of the dependen-
cies of the package, scripts to be run at various points in the install and uninstall process,
and administrative information such as the originator of the package. RPMs are built from
spec files. Figure 1.1 shows a trivial spec file for an imaginary component called Hello that
provides a command /usr/bin/hello.

An RPM package is typically produced from source as follows2:

$ rpmbuild -ba hello.tar.gz

where hello.tar.gz contains the sources of the component and its spec file. The resulting
RPM (say, hello-1.0.i686.rpm) must then be transferred to the client machines in some way
that the RPM tool itself does not specify. Once it is on a client machine, it can be installed:

$ rpm -i hello-1.0.i686.rpm

Similarly, we can upgrade the package when a new RPM with the same name comes along
(rpm -u hello-2.0.i686.rpm), and uninstall it (rpm -e hello). To perform upgrades and unin-
stalls cleanly, it is necessary to track which files belong to what packages. This information
can be queried by users:

$ rpm -ql hello

2In this thesis, the prefix $ in code samples indicates a Unix shell command.
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/usr/bin/hello

/etc/hello.conf

$ rpm -qf /usr/bin/hello

hello-1.0

RPM also maintains a cryptographic hash [145] of the contents of each file as it existed at
installation time. Thus, users can verify that files have not been tampered with.

RPM maintains the integrity of installed packages with respect to the dependency re-
quirements. Figure 1.2 shows another RPM package, xhello, that provides a GUI front-end
for hello and thus depends on the hello package (expressed at point 1 ). When we have the
xhello package installed, we cannot uninstall hello unless xhello is uninstalled also:

$ rpm -e hello

hello is needed by (installed) xhello-1.4

Similarly, RPM does not allow two packages that contain files with equal path names
to exist simultaneously in the system. For instance, when we have our hello-1.0 package
installed, it is not possible to install another package that also installs a file with path name
/usr/bin/hello. In general, this means that we cannot have multiple versions of the same
component installed simultaneously. It also means that it is hard for multiple users to
independently select, install and manage software.

A fundamental problem of RPM and essentially all general package management sys-
tems is that they cannot reliably determine the correctness of dependency specifications.
In our example, xhello depends on hello, and so its spec file will contain a dependency
specification to that effect, e.g.,

Requires: hello

But what happens when we forget to specify this? When the developer builds and tests the
RPM package, the component will probably work because in all likelihood the developer
has hello installed. If we then deploy xhello to clients, the component will work if hello
happens to have been installed previously. If it was not, xhello may fail mysteriously (Fig-
ure 1.3; black ovals denote broken components). Thus, it is intrinsically hard to validate
dependency specifications. (It is also hard to prevent unnecessary dependencies, but that
does not harm correctness, just efficiency.) An analysis of the actual number of depen-
dency errors in a large RPM-based Linux distribution is described in [87]. The number of
dependency errors turned out to be quite low, but this is likely to be at least in part due to
the substantial effort invested in specifying complete dependencies. Missing dependencies
lead to incomplete deployment; correct deployment on the other hand requires complete
deployment.

Related to the inability to validate dependency specifications is the fact that dependen-
cies tend to be inexact. Above, xhello required that a component named hello is present—
but it makes no requirements on the actual properties or interfaces of that component. That
is, the dependency specification is nominal (determined by name only), not by contract
(requiring that the dependency has certain properties). So any component named hello
satisfies the dependency. Actually, we can require specific versions of the dependency:

Requires: hello >= 1.0

8
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which excludes version 1.0. However, such version specifications involve a high degree of
wishful thinking, since we can never in general rely on the fact that any version in an open
range works. For instance, there is no way to know whether future release 1.3.1 of hello
will be backwards compatible. Even “exact” dependencies such as

Require: hello = 1.0

are unsafe, because this is still a nominal dependency: we can conceive of any number
of component instances with name hello and version number 1.0 that behave completely
differently. In fact, this is a real problem: Linux distributions from different vendors can
easily have components with equal names (e.g., glibc-2.3.5) that actually have vendor-
specific patches applied, have been built with specific options, compilers, or ABI options,
and so on.

Incomplete dependencies and inexact notions of component compatibility give rise to
interference between components, which is the phenomenon that an operation on one com-
ponent can “break” an essentially unrelated component. Figure 1.4 shows two examples of
interference. In the left scenario, the upgrading of application App2 breaks App1 because
the new version App2’ requires a newer version of LibB’, which happens not to be suffi-
ciently backwards compatible. In the right scenario, the uninstallation of App3 also breaks
App1, because the package manager has removed LibA under the mistaken belief that App3
was the sole user of LibA.

A more subtle problem in RPM (and most other deployment tools) is that it has the prop-
erty of destructive upgrading, which means that components are upgraded by overwriting
the files of the old version with those of the new one. This is the case because the new ver-
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Figure 1.5.: The dependency hell: the runtime dependency graph of Mozilla Firefox

sion typically lives in the same paths in the file system, e.g., hello-2.0 will still install into
/usr/bin/hello and /etc/hello.conf. Apart from the resulting inability to have multiple ver-
sions installed at the same time, this gives rise to a temporary inconsistency in the system:
there is a time window in which we have some of the files of the old version, and some of
the new version. Thus, upgrading is not atomic. If a user were to start the Hello program
during this time window, the program might not work at all or misbehave in certain ways.

The main criticism leveled at RPM by some of its users is the difficulty in obtaining RPM
packages. If we want to install a complex, multi-component system such as X.org, KDE,
or GNOME, we have to manually download a possibly large number of RPM packages
until all missing dependencies are resolved. That is, RPM verifies that an installation of a
package proceeds safely according to its spec file, but has no way to resolve problems by
itself if they do occur. This gives rise to the dependency hell, where users find themselves
chasing down RPMs that may not be easy to obtain. Figure 1.5 shows the dependency
graph of Mozilla Firefox, a popular web browser3. Each node is a component that must be
present. This gives an intuition as to the magnitude of the problem.

However, it is not actually a problem that RPM does not obtain packages automatically:
it is in fact a good separation of mechanism and policy. Higher-level deployment tools
can be built on top of RPM that do provide automatic fetching of packages. Installation

3This picture was produced from the Firefox component in the Nix Packages collection using the nix-env --query
--graph command and Graphviz [54].
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Figure 1.6.: Software deployment using yum

tools such as SuSE Linux’s YaST have a global view of all available packages in a Linux
distribution, and will automatically download them from a network site or prompt for the
appropriate installation CD or DVD. The tool yum (short for Yellow Dog Updater, Modi-
fied) [174], used among others by the Fedora Core Linux distribution, is a wrapper around
RPM to add support for network repositories from which the tool can automatically ac-
quire packages. Figure 1.6 illustrates a typical yum deployment scenario. Client machines
have a file /etc/yum.conf that contains a list of RPM repositories. We can then install a
package with all its dependencies by saying, e.g.,

$ yum install firefox

Yum will consult the repositories defined in /etc/yum.conf to find the appropriate RPM
packages, download them, and install them by calling the RPM tool.

Source deployment models In the open source community there are several operating
system distributions that deploy packages not (primarily) in binary form but in source form.
The main advantage of source deployment is that it allows greater flexibility by allowing
users to make specific build time configuration choices. For instance, we can optimise
components for our specific processor architecture, or remove all unneeded optional func-
tionality in components. Whether this is actually a desirable feature for end-users is up for
debate, but the ability to easily construct a customised set of component instances is quite
valuable to some users, such as developers, system administrators, deployers of complex
installations, and distributors.

The archetypical source deployment system is the FreeBSD Ports Collection [73]. Pack-
ages in source form (called ports) are essentially Makefiles [56] that describe how to recur-
sively build the dependencies of the package, download the sources of the package, apply
possible FreeBSD-specific patches, build the package, and finally install it in the file sys-
tem. By passing arguments to Make (or editing the Makefile, associated files, and options
in global configuration files), the component can be adapted to local requirements.

An obvious downside to source deployment is its rather considerable resource consump-
tion. While binary deployment only requires disk space for the binaries, and possibly net-
work resources for obtaining the binary package, source deployment requires resources to
obtain and store the sources, CPU time and memory to build the package, and disk space
for temporary files and the final results. To make matters worse, binary deployment only
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involves runtime dependencies, while source deployment may involve additional depen-
dencies that are only used at build time, such as compilers. Unsurprisingly, FreeBSD
therefore also offers a binary deployment option, called packages, which are pre-built
ports. However, ports and packages are not quite integrated: for instance, when installing
a port, dependencies that might be installed using packages are still built from source.

A further problem with source deployment is that it increases the risk of deployment
failure, as now not just runtime dependencies but also build-time dependencies can affect
the result of the deployment. For instance, if the user’s installed C compiler is not quite
what a component’s developer tested against, there is a slight probability that the com-
ponent fails to build or run correctly—and the product of sufficiently many slight failure
probabilities is a large probability.

Windows and Mac OS Windows and Mac OS X tend to use monolithic deployment
for applications: except for some large-grained dependencies on the operating system en-
vironment (e.g., on the kernel, the core GUI libraries, or Direct X), dependencies tend
to be distributed as part of the application itself, with no sharing of dependencies be-
tween applications. This can be accomplished through static linking or by having dy-
namic libraries be part of the private namespace (directory tree) of the application (e.g.,
C:\Program Files\MyApp\Foo.DLL). While this reduces deployment complexity at the end-
user machine, it has several downsides. First, it removes sharing: if two applications use
the “same” component, they will nevertheless end up using private copies. The result is
increased resource consumption in terms of disk space, RAM, cache efficiency, download
time, and so on. Clearly, it is bad if all or many of Firefox’s dependencies in Figure 1.5
were unshared. In the worst case, we get a quadratic blowup in the disk space require-
ments: if we have N applications that share the same M dependencies, then we need disk
space Θ(NM) instead of Θ(N + M). Second, it still requires the developer to obtain and
compose the components, typically through a semi-manual process.

Especially elegant from an end-user perspective are Mac OS’s application bundles,
which are directory trees containing all files belonging to an application. Generally, such
bundles are self-contained, except for operating system component dependencies. Con-
trary to typical Windows applications, they do not have other environment dependencies
such as registry settings. This means that bundles can be copied or moved around in the
file system arbitrarily. For instance, the whole of Microsoft Office X on Mac OS X can be
copied between machines by dragging it from one disk to another. Again, the limitation of
this approach is that it falls apart when components have dependencies on each other. That
is, the bundle approach works only for “top level” components, i.e., end-user applications4.

.NET Historically, Windows has suffered from the DLL hell, a result of an unmanaged
global namespace being used to store shared dependencies, e.g., the directory C:\Windows-
\System. An installation or uninstallation of one application frequently caused other ap-
plications to break because a shared library (DLL) would be replaced with an incompat-
ible version, or deleted altogether. This is a classic example of component interference.

4For instance, the management of Mac OS X’s BSD-based Unix foundations is a complete mess, which has
prompted the development of tools such as Fink [138], which is based on Debian’s APT system (discussed in
Section 7.6).
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Microsoft’s .NET platform [17] improves on this situation through its assemblies, which
are files that store code and other resources. Assemblies can have strong names, which
are globally unique identifiers signed by the assembly producer. Assemblies can depend
on each other through these strong names. The Global Assembly Cache (GAC) holds a
system-wide repository of assemblies, indexed by strong name. If assemblies in the GAC
differ in their strong names, they will not overwrite each other. Thus, interference does not
happen.

However, the GAC is only intended for shared components. Application code and mis-
cellaneous resources are typically not stored in the GAC, but in application-specific di-
rectories, e.g., C:\Program Files\MyApp. That is, management of those components must
be handled through other mechanisms. Also, the GAC only holds components that use a
specific component technology—.NET assemblies.

Other systems The Zero Install system [112] installs components on demand from net-
work repositories. On-demand installation is enabled by using a virtual file system that
intercepts file system requests for component files. For instance, when a process accesses
/uri/0install/abiword.org/abiword, and this file is not already present in the local component
cache, it is fetched from a repository, at which point the requesting process resumes. Users
can independently install software in this manner, and are unaffected by the actions of other
users. Unfortunately, systems depending on non-portable extensions to the file system face
difficulty in gaining wide adoption5. This is especially the case for deployment systems as
they should support a wide variety of platforms.

1.3. Motivation

From the previous discussion of existing deployment systems it should be clear that they
lack important features to support safe and efficient deployment. In particular, they have
some or all of the following problems:

• Dependency specifications are not validated, leading to incomplete deployment.

• Dependency specifications are inexact (e.g., nominal).

• It is not possible to deploy multiple versions or variants of a component side-by-side.

• Components can interfere with each other.

• It is not possible to roll back to previous configurations.

• Upgrade actions are not atomic.

• Applications must be monolithic, i.e., they must statically contain all their depen-
dencies.

5For instance, Apple is moving away from resource forks to bundles in recent releases of its Mac OS. The
former approach stores streams of metadata (such as icons) in files in addition to its regular data contents,
which is not portable. The latter approach on the other hand uses directory trees of regular files to keep such
data elements together, which is portable.
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• Deployment actions can only be performed by administrators, not by unprivileged
users.

• There is no link between binaries and the sources and build processes that built them.

• The system supports either source deployment or binary deployment, but not both;
or it supports both but in a non-unified way.

• It is difficult to adapt components.

• Component composition is manual.

• The component framework is narrowly restricted to components written in a specific
programming language or framework.

• The system depends on non-portable techniques.

The objective of the research described in this thesis is to develop a deployment system
that does not have these problems.

1.4. The Nix deployment system

This thesis describes the Nix deployment system, which overcomes the limitations of con-
temporary deployment tools described above. I describe the concepts and implementation
(how it works), the underlying principles (why it works), our experiences and empirical
validation (that it works), and the application areas to which it can be applied (where it
works).

The main idea of the Nix approach is to store software components in isolation from each
other in a central component store, under path names that contain cryptographic hashes of
all inputs involved in building the component, such as /nix/store/rwmfbhb2znwp...-firefox-
1.0.4. As I show in this thesis, this prevents undeclared dependencies and enables support
for side-by-side existence of component versions and variants.

Availability At the time of writing, the Nix system is available as free software at the
homepage of the TraCE project [161].

1.5. Contributions

The main contribution of this thesis is the development of a purely functional deployment
model, which we implemented in the Nix system. In this model a binary component is
uniquely defined by the declared inputs used to build the component. This enables arbitrary
component instances to exist side by side. I show how such a model can be “retrofitted”
onto existing software that was designed without such a model in mind.

Concretely, the contributions of this thesis are the following.

• The cryptographic hashing scheme used by the Nix component store prevents un-
declared dependencies, giving us complete deployment. Furthermore it provides
support for side-by-side existence of component versions and variants.
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• Isolation between components prevents interference.

• Users can install software independently from each other, without requiring mutual
trust relations. Components that are common between users are shared, i.e., stored
only once.

• Upgrades are atomic; there is no time window in which the system is in an inconsis-
tent state.

• Nix supports O(1)-time rollbacks to previous configurations.

• Nix supports automatic garbage collection of unused components.

• The Nix component language describes not just how to build individual components,
but also compositions. The language is a lazy, purely functional language. This is
a good basis for a component composition language, as it allows dependencies and
variability to be expressed in an elegant and flexible way.

• Nix has a transparent source/binary deployment model that marries the best parts
of source deployment models such as the FreeBSD Ports Collection, and binary
deployment models such as RPM. In essence, binary deployment is an automatic
optimisation of source deployment.

• Nix is policy-free; it provides mechanisms to implement various deployment poli-
cies, but does not enforce a specific one. Some policies described in this thesis are
channels (in push and pull variants), one-click installations, and pure source deploy-
ments.

• I show that a purely functional model supports efficient component upgrades despite
the fact that a change to a fundamental component can propagate massively through
the dependency graph.

• Nix supports distributed multi-platform builds in a transparent manner, i.e., a remote
build is indistinguishable from a local build from the perspective of the user.

• Nix provides a good basis for the implementation of a build farm, which supports
continuous integration and portability testing. I describe a Nix build farm that has
greatly improved manageability over other build farms and is integrated with release
management, that is, it builds concrete installable components that can be deployed
directly through Nix.

• The use of Nix for software deployment extends naturally to the field of service de-
ployment. Services are running processes that provide some useful facility to users,
such as web servers. They consist of software components, static configuration and
data, and mutable state. The first two aspects can be managed using Nix, and its
advantages—such as rollbacks and side-by-side deployment—apply here as well.

• Though Nix is typically used to build large-grained components (i.e., traditional
packages), it can also be used to build small-grained components such as individual
source files. When used in this way it is a superior alternative to build managers

15



1. Introduction

such as Make [56], ensuring complete dependency specifications and enabling more
sharing between builds.

The above may sound like a product feature list, which is not necessarily a good thing
as it is always possible to add any feature to a system given enough ad-hockery. However,
these contributions all follow from a small set of principles, foremost among them the
purely functional model.

1.6. Outline of this thesis

This thesis is divided in four parts. Part I (which includes this chapter) introduces the
problem domain and motivates the Nix system. Chapter 2, “An Overview of Nix”, intro-
duces the Nix system from a high-level perspective (i.e., that of users or authors of Nix
components), and gives some intuitions about the underlying principles.

Part II is about the principles and formal semantics of Nix. The basic philosophy behind
Nix—to solve deployment problems by treating them analogously to memory management
issues in programming languages—is introduced in Chapter 3, “Deployment as Memory
Management”.

The syntax and semantics of the Nix expression language—a purely functional language
used to describe components and compositions—is given in Chapter 4, “The Nix Expres-
sion Language”. This chapter also discusses some interesting aspects of the implementa-
tion of the Nix expression evaluator.

The next two chapters form the technical core of this thesis, as they describe the Nix
component store and the fundamental operations on it. In fact, there are two models for
the Nix store that are subtly different with important consequences. Chapter 5, “The Ex-
tensional Model”, formalises the extensional model, which was the first model and the one
with which we have gained the most experience. This chapter describes the objects that
live in the Nix store, the building of Nix expressions, binary deployment as an optimisation
of source deployment, distributed and multi-platform builds, and garbage collection.

The extensional model however has several downsides, in particular the inability to se-
curely share a Nix store between multiple users. These problems are fixed in the more
recent intensional model, described in Chapter 6, “The Intensional Model”.

Part III discusses in detail the various applications of Nix. Chapter 7, “Software Deploy-
ment”, is about Nix’s raison d’être, software deployment. It describes principles for Nix
expression writers that help ensure correct deployment, and various policies that deploy
components to clients. The main vehicle for this discussion is the Nix Packages collection
(Nixpkgs), a large set of existing Unix components that we deploy through Nix. Most of
our experience with the Nix system is in the context of the Nix Packages collection, so this
chapter provides a certain level of empirical validation for the Nix approach.

Chapter 8, “Continuous Integration and Release Management”, shows that Nix pro-
vides a solid basis for the implementation of a build farm, which is a facility that automati-
cally builds software components from a version management repository. This is useful to
support continuous integration testing, which provides developers with almost immediate
feedback as to whether their changes integrate cleanly with the work of other developers.
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Also, a Nix build farm can produce concrete releases that can be automatically deployed
to user machines, for instance through the channel mechanism described in Chapter 7.

Chapter 9, “Service Deployment”, takes Nix beyond deployment of software compo-
nents and into the realm of service deployment. It shows that Nix extends gracefully into
this domain using several examples of production services deployed using Nix.

Chapter 10, “Build Management”, extends Nix in another direction, towards support for
low-level build management. As stated above, Nix provides exactly the right technology
to implement a build manager that fixes the problems of most contemporary build tools.

Roadmap Different readers will find different parts of this thesis of interest. Chapter 2,
“An Overview of Nix” should be read by anyone. The semantics of the Nix system in Part II
can be skipped—initially, at least—by readers who are interested in Nix as a tool, but is
required reading for those who wish to modify Nix itself. Nix users will be most interested
in the various applications discussed in Part III. Chapter 7, “Software Deployment” on
deployment should not be skipped as it provides an in-depth discussion on Nix expressions,
builders, and deployment mechanisms and policies that are also relevant to the subsequent
application chapters.

Nix users and developers will also find the online manual useful [161].

Origins Parts of this thesis are adapted from earlier publications. Chapter 2, “An Over-
view of Nix” is very loosely based on the LISA ’04 paper “Nix: A Safe and Policy-
Free System for Software Deployment”, co-authored with Merijn de Jonge and Eelco
Visser [50]. Chapter 3, “Deployment as Memory Management” is based on Sections 3–6 of
the ICSE 2004 paper “Imposing a Memory Management Discipline on Software Deploy-
ment”, written with Eelco Visser and Merijn de Jonge [52]. Chapter 6, “The Intensional
Model” is based on the ASE 2005 paper “Secure Sharing Between Untrusted Users in a
Transparent Source/Binary Deployment Model” [48]. Section 7.5 on patch deployment
appeared as the CBSE 2005 paper “Efficient Upgrading in a Purely Functional Compo-
nent Deployment Model” [47]. Chapter 9, “Service Deployment” is based on the SCM-12
paper “Service Configuration Management”, written with Martin Bravenboer and Eelco
Visser [49]. Snippets of Section 10.2 were taken from the SCM-11 paper “Integrating
Software Construction and Software Deployment” [46].

1.7. Notational conventions

Part II of this thesis contains a number of algorithms in a pseudo-code notation in an im-
perative style with some functional elements. Keywords in algorithms are in boldface,
variables are in italic, and function names are in sans serif. Callouts like this 1 are fre-
quently used to refer to points of interest in algorithms and listings from the text. Variable
assignment is written x← value.

Sets are written in curly braces, e.g., {1,2,3}. Since many algorithms frequently extend
variables of set type with new elements, there is a special notation x ∪← set which is syn-
tactic sugar for x← x ∪ set. For instance, x ∪← {2,3} extends the set stored in x with the
elements 2 and 3.
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Set comprehensions are a concise notation for set construction: {expr | conditions} pro-
duces a set by applying the expression expr to all values from a (usually implicit) universe
that meet the predicate conditions. For example, {x2 | x ∈ {2,3,4}∧ x 6= 3} produces the
set {4,16}.

Ordered lists are written between square brackets, e.g., [1,2,1,3]. Lists can contain ele-
ments multiple times. Lists are sometimes manipulated in a functional (Haskell-like [135])
style using the function map and λ -abstraction: x←map(λv . f (v),y) constructs a list x by
applying a function f (v) to each element in the list x. For instance, map(λx . x2, [4,2,6])
produces the list [16,4,36]. Tuples or pairs are enclosed in parentheses, e.g., (a,b,c).

Throughout this thesis, storage sizes are given in IEC units [33]: 1 KiB = 1024 bytes,
1 MiB = 10242 bytes, and 1 GiB = 10243 bytes.

Data types are defined in a Haskell-like notation. For instance, the definition

data Foo = Foo {
x : String,
ys : [String],
zs : {String}

}

defines a data type Foo with three fields: a string x, a list of strings ys, and a set of strings
zs. An example of the construction of a value of this type is as follows:

Foo {x = "test", ys = ["hello", "world"],zs = /0}

In addition, types can have unnamed fields and multiple constructors. For example, the
definition

data Tree = Leaf String | Branch Tree Tree

defines a binary tree type with strings stored in the leaves. An example value is

Branch (Leaf "a") (Branch (Leaf "b") (Leaf "c")).
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2. An Overview of Nix

The previous chapter discussed the features that we require from a software deployment
system, as well as the shortcomings of current technology. The subject of this thesis is
the Nix deployment system, which addresses many of these problems. This chapter gives
a gentle introduction to Nix from a user perspective (where “user” refers to component
deployers as well as end-users). The succeeding parts of this thesis will present a more
formal exposition of Nix’s semantics (Part II) and applications (Part III).

2.1. The Nix store

Nix is a system for software deployment. The term component will be used to denote the
basic units of deployment. These are simply sets of files that implement some arbitrary
functionality through an interface. In fact, Nix does not really care what a component ac-
tually is. As far as Nix is concerned a component is just a set of files in a file system. That
is, we have a very weak notion of component, weaker even than the commonly used defi-
nition in [155]. (What we call a component typically corresponds to the ambiguous notion
of a package in package management systems. Nix’s notion of components is discussed
further in Section 3.1.)

Nix stores components in a component store, also called the Nix store. The store is
simply a designated directory in the file system, usually /nix/store. The entries in that
directory are components (and some other auxiliary files discussed later). Each component
is stored in isolation; no two components have the same file name in the store.

A subset of a typical Nix store is shown in Figure 2.1. It contains a number of applica-
tions—GNU Hello 2.1.1 (a toy program that prints “Hello World”, Subversion 1.1.4 (a ver-
sion management system), and Subversion 1.2.0—along with some of their dependencies.
These components are not single files, but directory trees. For instance, Subversion con-
sists of a directory called bin containing a program called svn, and a directory lib containing
many more files belonging to the component. (For simplicity, many files and dependencies
have been omitted from the example.) The arrows denote runtime dependencies between
components, which will be described shortly.

The notable feature in Figure 2.1 is the names of the components in the Nix store,
such as /nix/store/bwacc7a5c5n3...-hello-2.1.1. The initial part of the file names, e.g.,
bwacc7a5c5n3..., is what gives Nix the ability to prevent undeclared dependencies and
component interference. It is a representation of the cryptographic hash of all inputs in-
volved in building the component.

Cryptographic hash functions are hash functions that map an arbitrary-length input onto
a fixed-length bit string. They have the property that they are collision-resistant: it is
computationally infeasible to find two inputs that hash to the same value. Cryptographic
hashes are discussed in more detail in Section 5.1. Nix uses 160-bit hashes represented in
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Figure 2.1.: The Nix store
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Figure 2.2.: Closure in the store

a base-32 notation, so each hash is 32 characters long. In this thesis, hashes are abridged
to ellipses (...) most of the time for reasons of legibility. The full path of a directory entry
in the Nix store is referred to as its store path. An example of a full store path is:

/nix/store/bwacc7a5c5n3qx37nz5drwcgd2lv89w6-hello-2.1.1

So the file bin/hello in that component has the full path
/nix/store/bwacc7a5c5n3qx37nz5drwcgd2lv89w6-hello-2.1.1/bin/hello

The hash is computed over all inputs, including the following:

• The sources of the components.

• The script that performed the build.

• Any arguments or environment variables [152] passed to the build script.

• All build time dependencies, typically including the compiler, linker, any libraries
used at build time, standard Unix tools such as cp and tar, the shell, and so on.

Cryptographic hashes in store paths serve two main goals. They prevent interference
between components, and they allow complete identification of dependencies. The lack
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of these two properties is the cause for the vast majority of correctness and flexibility
problems faced by conventional deployment systems, as we saw in Section 1.2.

Preventing interference Since the hash is computed over all inputs to the build process
of the component, any change, no matter how slight, will be reflected in the hash. This
includes changes to the dependencies; the hash is computed recursively. Thus, the hash
essentially provides a unique identifier for a configuration. If two component compositions
differ in any way, they will occupy different paths in the store (except for dependencies that
they have in common). Installation or uninstallation of a configuration therefore will not
interfere with any other configuration.

For instance, in the Nix store in Figure 2.1 there are two versions of Subversion. They
were built from different sources, and so their hashes differ. Additionally, Subversion
1.2.0 uses a newer version of the OpenSSL cryptographic library. This newer version of
OpenSSL likewise exists in a path different from the old OpenSSL. Thus, even though
installing a new Subversion entails installing a new OpenSSL, the old Subversion instance
is not affected, since it continues to use the old OpenSSL.

Recursive hash computation causes changes to a component to “propagate” through the
dependency graph. This is illustrated in Figure 2.3, which shows the hash components of
the store paths computed for the Mozilla Firefox component (a web browser) and some of
its build time dependencies, both before and after a change is made to one of those depen-
dencies. (An edge from a node A to a node B denotes that the build result of A is an input to
the build process of B.) Specifically, the GTK GUI library dependency is updated from ver-
sion 2.2.4 to 2.4.13. That is, its source bundle (gtk+-2.2.4.tar.bz2 and gtk+-2.4.13.tar.bz2,
respectively) changes. This change propagates through the dependency graph, causing dif-
ferent store paths to be computed for the GTK component and the Firefox component.
However, components that do not depend on GTK, such as Glibc (the GNU C Library),
are unaffected.

An important point here is that upgrading only happens by rebuilding the component in
question and all components that depend on it. We never perform a destructive upgrade.
Components never change after they have been built—they are marked as read-only in the
file system. Assuming that the build process for a component is deterministic, this means
that the hash identifies the contents of the components at all times, not only just after it has
been built. Conversely, the build-time inputs determine the contents of the component.

Therefore we call this a purely functional model. In purely functional programming
languages such as Haskell [135], as in mathematics, the result of a function call depends
exclusively on the definition of the function and on the arguments. In Nix, the contents of
a component depend exclusively on the build inputs. The advantage of a purely functional
model is that we obtain strong guarantees about components, such as non-interference.

Identifying dependencies The use of cryptographic hashes in component file names
also prevents the use of undeclared dependencies, which (as we saw in Section 1.2) is the
major cause of incomplete deployment. The reason that incomplete dependency informa-
tion occurs is that there is generally nothing that prevents a component from accessing
another component, either at build time or at runtime. For instance, a line in a build script
or Makefile such as
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Figure 2.3.: Propagation of dependency changes through the store paths of the build-time
component dependency graph

gcc -o program main.c ui.c -lssl

which links a program consisting of two C modules against a library named ssl, causes
the linker to search in a set of standard locations for a library called ssl1. These standard
locations typically include “global” system directories such as /usr/lib on Unix systems. If
the library happens to exist in one of those directories, we have incurred a dependency.
However, there is nothing that forces us to include this dependency in the dependency
specifications of the deployment system (e.g., in the RPM spec file of Figure 1.2).

At runtime we have the same problem. Since components can perform arbitrary I/O
actions, they can load and use other components. For instance, if the library ssl used
above is a dynamic library, then program will contain an entry in its dynamic linkage
meta-information that causes the dynamic linker to search for the library when program is
started. The dynamic linker similarly searches in global locations such as /lib and /usr/lib.

Of course, there are countless mechanisms other than static or dynamic linking that es-
tablish a component composition. Some examples are including C header files, importing
Java classes at compile time, calling external programs found through the PATH environ-
ment variable, and loading help files at runtime.

The hashing scheme neatly prevents these problems by not storing components in global
locations, but in isolation from each other. For instance, assuming that all components in
the system are stored in the Nix store, the linker line

gcc -o program main.c ui.c -lssl

will simply fail to find libssl. Unless the path to an OpenSSL instance (e.g., /nix/store/-
5jq6jgkamxjj...-openssl-0.9.7d) was explicitly fed into the build process and added to the
linker’s search path, no such instance will be found by the linker.

1To be precise, libssl.a or libssl.so on Unix.

22



2.1. The Nix store

00000000 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|

00000010 02 00 03 00 01 00 00 00 40 bb 04 08 34 00 00 00 |........@...4...|

...

00000130 04 00 00 00 2f 6e 69 78 2f 73 74 6f 72 65 2f 373737 |..../nix/store/777|

00000140 32 62 79 32 69 77 35 77 64 38 69 68 72 35 79 3732 62 79 32 69 77 35 77 64 38 69 68 72 35 79 3732 62 79 32 69 77 35 77 64 38 69 68 72 35 79 37 |2by2iw5wd8ihr5y72by2iw5wd8ihr5y72by2iw5wd8ihr5y7|

00000150 6e 31 31 31 6a 66 77 6c 37 33 71 32 68 36 376e 31 31 31 6a 66 77 6c 37 33 71 32 68 36 376e 31 31 31 6a 66 77 6c 37 33 71 32 68 36 37 2d |n111jfwl73q2h67n111jfwl73q2h67n111jfwl73q2h67-|

00000160 67 6c 69 62 63 2d 32 2e 33 2e 35 2f 6c 69 62 2f |glibc-2.3.5/lib/|

00000170 6c 64 2d 6c 69 6e 75 78 2e 73 6f 2e 32 00 00 00 |ld-linux.so.2...|

...

00002670 73 74 6f 72 65 2f 35 6a 71 36 6a 67 6b 61 6d 7835 6a 71 36 6a 67 6b 61 6d 7835 6a 71 36 6a 67 6b 61 6d 78 |store/5jq6jgkamx5jq6jgkamx5jq6jgkamx|

00002680 6a 6a 64 64 6c 61 76 67 76 63 39 6e 76 30 6c 726a 6a 64 64 6c 61 76 67 76 63 39 6e 76 30 6c 726a 6a 64 64 6c 61 76 67 76 63 39 6e 76 30 6c 72 |jjddlavgvc9nv0lrjjddlavgvc9nv0lrjjddlavgvc9nv0lr|

00002690 6d 38 66 79 73 376d 38 66 79 73 376d 38 66 79 73 37 2d 6f 70 65 6e 73 73 6c 2d 30 |m8fys7m8fys7m8fys7-openssl-0|

000026a0 2e 39 2e 37 64 2f 6c 69 62 3a 2f 6e 69 78 2f 73 |.9.7d/lib:/nix/s|

...

Figure 2.4.: Retained dependencies in the svn executable

Also, we go to some lengths to ensure that component builders are pure, that is, not
influenced by outside factors. For example, the builder is called with an empty set of
environment variables (such as the PATH environment variable, which is used by Unix
shells to locate programs) to prevent user settings such as search paths from reaching tools
invoked by the builder. Similarly, at runtime on Linux systems, we use a patched dynamic
linker that does not search in any default locations—so if a dynamic library is not explicitly
declared with its full path in an executable, the dynamic linker will not find it.

Thus, when the developer or deployer fails to specify a dependency explicitly (in the Nix
expression formalism, discussed below), the component will fail deterministically. That
is, it will not succeed if the dependency already happens to be available in the Nix store,
without having been specified as an input. By contrast, the deployment systems discussed
in Section 1.2 allow components to build or run successfully even if some dependencies
are not declared.

Retained dependencies A rather tricky aspect to dependency identification is the oc-
currence of retained dependencies. This is what happens when the build process of a
component stores a path to a dependency in the component. For instance, the linker invo-
cation above will store the path of the OpenSSL library in program, i.e., program will have
a “hard-coded” reference to /nix/store/5jq6jgkamxjj...-openssl-0.9.7d/lib/libssl.so.

Figure 2.4 shows a dump of parts of the Subversion executable stored in the file /nix/-
store/v2cc475f6nv1...-subversion-1.1.4/bin/svn. Offsets are on the left, a hexadecimal rep-
resentation in the middle, and an ASCII representation on the right. The build process for
Subversion has caused a reference to the aforementioned OpenSSL instance to be stored in
the program’s executable image. The path of OpenSSL has been stored in the RPATH field
of the header of the ELF executable, which specifies a list of directories to be searched
by the dynamic linker at runtime [160]. Even though our patched dynamic linker does
not search in /nix/store/5jq6jgkamxjj...-openssl-0.9.7d/lib by default, it will find the library
anyway through the executable’s RPATH.

This might appear to be bad news for our attempts to prevent undeclared dependencies.
Of course, we happen to know the internal structure of Unix executables, so for this specific
file format we can discover retained dependencies. But we do not know the format of every
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file type, and we do not wish to commit ourselves to a single component composition
mechanism. E.g., Java and .NET can find retained dependencies by looking at class files
and assemblies, respectively, but only for their specific dynamic linkage mechanisms (and
not for dependencies loaded at runtime).

The hashing scheme comes to the rescue once more. The hash part of component paths
is highly distinctive, e.g., 5jq6jgkamxjj.... Therefore we can discover retained dependen-
cies generically, independent of specific file formats, by scanning for occurrences of hash
parts. For instance, the executable image in Figure 2.4 contains the highlighted string
5jq6jgkamxjj..., which is evidence that an execution of the svn program might need that
particular OpenSSL instance. Likewise, we can see that it has a retained dependency on
some Glibc instance (/nix/store/72by2iw5wd8i.... Thus, we automatically add these as run-
time dependencies of the Subversion component. Using this scanning approach, we find
the runtime dependencies indicated in Figure 2.1.

This approach might seem a bit dodgy. After all, what happens when a file name is rep-
resented in a non-standard way, e.g., in UTF-16 [34, Section 2.5] or when the executable
is compressed? In Chapter 3 the dependency problem is cast in terms of memory man-
agement in programming languages, which justifies the scanning approach as an analogue
of conservative garbage collection. Whether this is a legitimate approach is an empirical
question, which is addressed in Section 7.1.5.

Note that strictly speaking it is not the use of cryptographic hashes per se, but globally
unique identifiers in file names that make this work. A sufficiently long pseudo-random
number also does the trick. However, the hashes are needed to prevent interference, while
at the same time preventing unnecessary duplication of identical components (which would
happen with random paths).

Closures Section 1.2 first stated the goal of complete deployment: safe deployment re-
quires that there are no missing dependencies. This means that we need to deploy closures
of components under the “depends-on” relation. That is, when we deploy (i.e., copy) a
component X to a client machine, and X depends on Y , then we also need to deploy Y to
the client machine.

The hash scanning approach gives us all runtime dependencies of a component, while
hashes themselves prevent undeclared build-time dependencies. Furthermore, these de-
pendencies are exact, not nominal (see page 8). Thus, Nix knows the entire dependency
graph, both at build time and runtime. With full knowledge of the dependency graph, Nix
can compute closures of components. Figure 2.2 shows the closure of the Subversion 1.1.4
instance in the Nix store, found by transitively following all dependency arrows.

In summary, the purely functional model, and its concrete implementation in the form
of the hashing approach used by the Nix store, prevents interference and enables complete
deployment. It makes deployment much more likely to be correct, and is therefore one
of the major results of this thesis. However, the purely functional model does provoke a
number of questions, such as:

• Hashes do not appear to be very user-friendly. Can we hide them from users in
everyday interaction?

• Can we deploy upgrades efficiently? That is, suppose that we want to upgrade Glibc
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(a dependency of all other components in Figure 2.1). Can we prevent a costly
redownload of all dependent components?

As we will see in the remainder of this thesis, the answer to these questions is “yes”.

2.2. Nix expressions

Nix components are built from Nix expressions. The language of Nix expressions is a sim-
ple purely functional language used to describe components and the compositions thereof.

This section introduces the Nix expression language using a simple example. In com-
puter science’s finest tradition we will start with “Hello World”; to be precise, a Nix ex-
pression that builds the GNU Hello package. GNU Hello is a program that prints out the
text Hello World and so “allows nonprogrammers to use a classic computer science tool
which would otherwise be unavailable to them” [67]. It is representative of what one must
do to deploy a component using Nix. Generally, to deploy a component one performs the
following three steps:

• Write a Nix expression for the component (Figure 2.6), which describes all the in-
puts involved in building the component, such as dependencies (other components
required by the component), sources, and so on.

• Write a builder (Figure 2.7)—typically a shell script—that actually builds the com-
ponent from the inputs.

• Create a composition (Figure 2.8). The Nix expression written in the first step is a
function: in order to build a concrete component, it requires that the dependencies are
filled in. To compose the component with its dependencies, we must write another
Nix expression that calls the function with appropriate arguments.

The Nix Packages collection The GNU Hello example is taken from the Nix Packages
collection (Nixpkgs), a large set of Nix expressions for common and not-so-common soft-
ware components. Since Nixpkgs contains many components and also describes their com-
positions, many files are involved in building a component. It is useful to have a mental pic-
ture of how the different parts fit together. Figure 2.5 shows the directory structure of parts
of the Nix Packages collection, including some of the Nix expressions, builders, and mis-
cellaneous inputs contained therein. The function that builds Hello components is defined
in pkgs/applications/misc/hello/default.nix. Likewise, many other components are defined,
hierarchically organised by component purpose or topic. Builders are placed in the same
directory as the Nix expression that uses them, e.g., pkgs/applications/misc/hello/builder.sh
for the Hello build script.

Compositions are defined in pkgs/system/all-packages-generic.nix, which imports the
various component-specific Nix expressions and puts them all together. The file has
generic in its name because it is itself a function that returns compositions for vari-
ous machine architecture and operating system platforms. The function pkgs/system/all-
packages.nix does actually evaluate to a set of concrete components that can be built and
installed on the current platform.

25



2. An Overview of Nix
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Figure 2.5.: Organisation of the Nix Packages collection

There is nothing in Nix that requires this organisation; it is merely a useful convention.
It is perfectly possible to place component expressions and builders in the same directory
by naming them appropriately, e.g., hello.nix, hello-builder.sh, firefox.nix, and so on. It is
also possible to put all Nix expressions in a single file, e.g., put everything in all-packages-
generic.nix, which of course would make this file quickly spiral out of control. In fact,
it is not even necessary to define components as functions and compose them separately,
as done in the 3-step procedure above; we could remove all variability and write Nix
expressions that describe exactly one build action, rather than a family of build actions.
Clearly, that is not a very general approach.

We now look at the parts that constitute the Hello component in detail.

Nix expression for the Hello component Figure 2.6 shows a Nix expression for GNU
Hello. It has a number of salient features:

2 This states that the expression is a function that expects to be called with three ar-
guments: stdenv, fetchurl, and perl. They are needed to build Hello, but we don’t
know how to build them here; that’s why they are function arguments. stdenv is a
component that is used by almost all Nix Packages components; it provides a “stan-
dard” environment consisting of the things one expects in a basic Unix environment:
a C/C++ compiler (GCC, to be precise), the Bash shell, fundamental Unix tools
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{stdenv, fetchurl, perl}: 2

stdenv.mkDerivation { 3
name = "hello-2.1.1"; 4
builder = ./builder.sh; 5
src = fetchurl { 6
url = http://ftp.gnu.org/pub/gnu/hello/hello-2.1.1.tar.gz;

md5 = "70c9ccf9fac07f762c24f2df2290784d";

};

inherit perl; 7
}

Figure 2.6.: pkgs/applications/misc/hello/default.nix: Nix expression for GNU Hello

such as cp, grep, tar, etc. fetchurl is a function that downloads files. perl is the Perl
interpreter.

Nix functions generally have the form {x, y, ..., z}: e where x, y, etc. are the names
of the expected arguments, and where e is the body (result) of the function. So here,
the entire remainder of the file is the body of the function; when given the required
arguments, the body describes how to build an instance of the Hello component.

3 The result of the function in this case is a derivation. This is Nix-speak for a com-
ponent build action, which derives the component from its inputs. We perform a
derivation by calling stdenv.mkDerivation. mkDerivation is a function provided by
stdenv that builds a component from a set of attributes2. An attribute set is just a
list of key/value pairs where each value is an arbitrary Nix expression. They take the
general form {name1 = expr1; ... namen = exprn;}.

The attributes given to stdenv.mkDerivation are the concrete inputs to the build ac-
tion.

4 A few of the attributes to derivations are special. The attribute name specifies the
symbolic name and version of the component. It is appended to the cryptographic
hash in store paths (see, e.g., Figure 2.1). Nix doesn’t care very much about it most
of the time.

5 The attribute builder specifies the script that actually builds the component. This
attribute can sometimes be omitted, in which case stdenv.mkDerivation will fill in
a default builder (which essentially performs a “standard” Unix component build
sequence consisting of the commands configure; make; make install). Hello is suf-
ficiently simple that the default builder suffices; but in this case, for educational
purposes an actual builder is shown in Figure 2.7, discussed below.

6 The builder has to know what the sources of the component are. Here, the attribute
src is bound to the result of a call to the fetchurl function. Given a URL and an MD5
hash of the expected contents of the file at that URL, this function builds a derivation

2mkDerivation is actually a wrapper around the primitive operation derivation, shown on page 80.
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source $stdenv/setup 8

PATH=$perl/bin:$PATH 9

tar xvfz $src 10
cd hello-*

./configure --prefix=$out 11
make 12
make install

Figure 2.7.: pkgs/applications/misc/hello/builder.sh: Builder for GNU Hello

that downloads the file and checks its hash. So the sources are dependencies that like
all other dependencies are built before Hello itself is built.

Instead of src any other name could have been used, and in fact there can be any
number of sources (bound to different attributes). However, src is customary, and it
is also expected by the default builder (which we don’t use in this example).

7 Since the derivation requires Perl, we have to pass the value of the perl function
argument to the builder. All attributes in the set are actually passed as environment
variables to the builder, so declaring an attribute

perl = perl;

will do the trick: it binds an attribute perl to the function argument which also hap-
pens to be called perl. However, this looks a bit silly, so there is a shorter syntax.
The inherit keyword causes the specified attributes to be bound to whatever variables
with the same name happen to be in scope.

Builder for the Hello component Figure 2.7 shows the builder for GNU Hello. To build
a component, Nix executes the builder. The attributes in the attribute set of the derivation
are passed as environment variables. Attribute values that evaluate to derivations (such as
perl, which below in Figure 2.8 is bound to a derivation) are built recursively. The paths
of the resulting components are passed through the corresponding environment variables.
The special environment variable out holds the intended output path. This is where the
builder should store its result.

The build script for Hello is a typical Unix build script: it unpacks the sources, runs a
configure script that detects platform characteristics and generates Makefiles, runs make to
compile the program, and finally runs make install to copy it to its intended location in the
file system. However, there are some Nix-specific points:

8 When Nix runs a builder, it initially completely clears all environment variables (ex-
cept for the attributes declared in the derivation). For example, the PATH variable is
empty3. This is done to prevent undeclared inputs from being used in the build pro-
cess. If for example the PATH contained /usr/bin, then the builder might accidentally
use /usr/bin/gcc.

3Actually, it is initialised to /path-not-set to prevent Bash from setting it to a default value.
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The first step is therefore to set up the environment so that the tools included in the
standard environment are available. This is done by calling the setup script of the
standard environment. The environment variable stdenv points to the location of the
standard environment being used. (It wasn’t specified explicitly as an attribute in the
Hello expression in Figure 2.6, but mkDerivation adds it automatically.)

9 Since Hello needs Perl, we have to make sure that Perl is in the PATH. The perl en-
vironment variable points to the location of the Perl component (since it was passed
in as an attribute to the derivation), so the shell expression $perl/bin evaluates to the
directory containing the Perl interpreter.

10 Now we have to unpack the sources. The src attribute was bound to the result of
fetching the Hello source distribution from the network, so the src environment vari-
able points to the location in the Nix store to which the distribution was downloaded.
After unpacking, we change to the resulting source directory.

11 GNU Hello is a typical Autoconf-based package. Autoconf [64, 172] is a tool that
allows a source-based package to automatically adapt itself to its environment by de-
tecting properties such as availability and paths of libraries and other dependencies,
quirks in the C compiler, and so on. Autoconf-based packages always have a script
called configure that performs these tests and generates files such as Makefiles, C
header files (e.g., config.h), etc. Thus, we first have to run Hello’s configure script
(which was generated by Autoconf). The store path where the component is to be
stored, is passed in through the environment variable out. Here we tell configure to
produce Makefiles that will build and install a component in the intended output path
in the Nix store.

12 Finally we build Hello (make) and install it into the location specified by the out
variable (make install).

Composition of the Hello component Since the Nix expression for Hello in Figure 2.6
is a function, we cannot use it directly to build and install a Hello component. We need
to compose it first; that is, we have to call the function with the expected arguments. In
the Nix Packages collection this is done in the file pkgs/system/all-packages-generic.nix,
where all Nix expressions for components are imported and called with the appropriate
arguments. This is a large file, but the parts relevant to Hello are shown in Figure 2.8.

13 This file defines a set of attributes, all of which in this case evaluate to concrete
derivations (i.e., not functions). In fact, we define a mutually recursive set of at-
tributes using the keyword rec. That is, the attributes can refer to each other4. This
is precisely what we want, namely, “plug” the various components into each other.

14 Here we import the Nix expression for GNU Hello. The import operation just loads
and returns the specified Nix expression. In fact, we could just have put the contents

4While attributes can refer to values defined in the same scope, derivations cannot be mutual dependencies:
such derivations would be impossible to build (see also Lemma 3 on page 130).
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...

rec { 13

hello = (import ../applications/misc/hello 14 { 15
inherit fetchurl stdenv perl;

};

perl = (import ../development/interpreters/perl) { 16
inherit fetchurl stdenv;

};

fetchurl = (import ../build-support/fetchurl) {

inherit stdenv; ...

};

stdenv = ...;

}

Figure 2.8.: pkgs/system/all-packages-generic.nix: Composition of GNU Hello and other
components

of Figure 2.6 in all-packages-generic.nix at this point; this is completely equivalent,
but it would make the file rather bulky.

Relative paths such as ../applications/misc/hello are relative to the directory of the Nix
expression that contains them, rather than the current directory or some global search
path. Since the expression in Figure 2.8 is stored in pkgs/system/all-packages-
generic.nix, this relative path resolves to pkgs/applications/misc/hello, which is the
directory of the Nix expression in Figure 2.6.

Note that we refer to ../applications/misc/hello, not ../applications/misc/hello/-
default.nix. The latter is actually equivalent to the former in the case of directories;
when importing a path referring to a directory, Nix automatically appends /default.nix
to the path.

15 This is where the actual composition takes place. Here we call the function imported
from ../applications/misc/hello with an attribute set containing the arguments that the
function expects, namely fetchurl, stdenv, and perl. We use the inherit construct
again to copy the attributes defined in the surrounding scope (we could also have
written fetchurl = fetchurl;, etc.). Note that Nix function arguments are not positional;
Nix functions just expect an attribute set containing attributes corresponding to the
declared (formal) arguments.

The result of this function call is an actual derivation that can be built by Nix (since
when we fill in the arguments of the function, what we get is its body, which is the
call to stdenv.mkDerivation in Figure 2.6).

16 Likewise, concrete instances of Perl, fetchurl, and the standard environment are con-
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structed by calling their functions with the appropriate arguments.

The attribute fetchurl actually does not evaluate to a derivation, but to a function that
takes arguments url and md5, as seen in Figure 2.6. This is an example of partial
parameterisation.

Thus, the value bound to the hello attribute in Figure 2.8 represents a derivation of an
instance of Hello, as well as of all its dependencies.

Surprisingly, describing not just components but also compositions is not a common
feature of the component description formalisms of deployment systems. For instance,
RPM spec files (see page 6) describe how to build components, but not how to build the
dependencies—even though the dependencies can have a profound effect on the build re-
sult. The actual composition is left implicit. Nominal dependency specifications are used
to require the presence of certain dependencies, but as we have seen, nominal dependency
specifications are insufficient. Formalisms such as RPM spec files therefore woefully un-
derspecify components. Only a full set of RPM spec files closed under the dependency
relation fully describes a component build (disregarding, of course, the real possibility of
undeclared dependencies and other environmental influences).

A slightly more complex example Figure 2.9 shows a Nix expression that demonstrates
some additional language features. It contains a function that produces Subversion com-
ponents. Subversion [31, 137] is a version management system [159, 180]. Subversion
clients can access a central version management repository through various means: local
file system access, WebDAV (an extension to HTTP to support authoring and version-
ing [30]), and the specialised svnserve protocol. These various access methods lead to a
number of optional features, which in turn lead to optional dependencies5:

• Subversion has two storage back-ends for repositories: one that uses a built-in file
system based storage, and one that uses the external Berkeley DB embedded database
library. Use of the latter back-end induces a dependency on the Berkeley DB com-
ponent.

• Subversion can build an Apache module that allows it to act as a WebDAV server for
remote clients. This feature requires the Apache HTTPD server component.

• Subversion can access remote WebDAV repositories over HTTP by default. If access
over HTTPS (i.e., HTTP encrypted over the Secure Sockets Layer [76]) is desired,
then it requires the OpenSSL cryptographic library component.

• Data sent over HTTP connections can be compressed using the Zlib algorithm,
which requires the Zlib library component.

In other words, Subversion has quite a bit of build-time variability. Figure 2.9 shows
how such variability can be expressed in the Nix expression language. For instance, the
optional support for SSL encryption is expressed by giving the function a Boolean param-
eter sslSupport 17 that specifies whether to build a Subversion instance with SSL support.

5There are actually even more dependencies than listed here, such as bindings for various languages. These
have been omitted to keep the example short.
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{ bdbSupport ? false

, httpServer ? false

, sslSupport ? false 17
, compressionSupport ? false

, stdenv, fetchurl

, openssl ? null 18, httpd ? null, db4 ? null, expat, zlib ? null

}:

assert bdbSupport -> db4 != null; 19
assert httpServer -> httpd != null && httpd.expat == expat; 20
assert sslSupport -> openssl != null &&

(httpServer -> httpd.openssl == openssl);

assert compressionSupport -> zlib != null;

stdenv.mkDerivation {

name = "subversion-1.2.1";

builder = ./builder.sh;

src = fetchurl {

url = http://subversion.tigris.org/downloads/subversion-1.2.1.tar.bz2;

md5 = "0b546195ca794c327c6830f2e88661f7";

};

openssl = if sslSupport then openssl else null; 21
zlib = if compressionSupport then zlib else null;

httpd = if httpServer then httpd else null;

db4 = if bdbSupport then db4 else null;

inherit expat bdbSupport httpServer sslSupport;

}

Figure 2.9.: pkgs/applications/version-management/subversion/default.nix: Nix expression
for Subversion

This is distinct from the passing of the actual OpenSSL dependency 18 in order to separate
logical features from the dependencies required to implement them, if any. Many features
require no dependencies, or require multiple dependencies. The list of function arguments
also shows the language feature of default arguments, which are arguments that may be
omitted when the function is called. If they are omitted, the default is used instead.

A call to the Subversion function (e.g., in all-packages-generic.nix) to build a minimal
Subversion component will look like this:

subversion = (import .../subversion) {

inherit fetchurl stdenv expat;

};

On the other hand, the following call builds a full-featured Subversion component:

subversion = (import .../subversion) {
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inherit fetchurl stdenv openssl db4 expat zlib;

httpd = apacheHttpd;

localServer = true;

httpServer = true;

sslSupport = true;

compressionSupport = true;

};

There are some other language aspects worth noting in Figure 2.9. Assertions enable
consistency checking between components and feature selections. The assertion in 19
verifies that if Berkeley DB support is requested, the db4 dependency should not be null.
The value null is a special constant that allows components to be omitted, which would be
wrong here. Note that the default for the db4 argument is in fact null, which is appropriate
for bdbSupport’s default of false. But if the function is called with bdbSupport set to true,
then the assertion protects the user against forgetting to specify the db4 parameter.

The next two assertions 20 express consistency requirements between components. The
first one states that if the Apache WebDAV module is to be built, then Apache’s expat
dependency (Expat is an XML parsing library) should be exactly equal to Subversion’s
expat dependency, where “exactly equal” means that they should be in the same store path.
This is because the dynamic libraries of Apache and Subversion will end up being linked
against each other. If both bring in different instances of Expat, a runtime link error will
ensue. Hence the requirement that both Expats are to be the same. Likewise, if SSL
and WebDAV support are enabled, Apache and Subversion should use the same OpenSSL
libraries.

As in the Hello example, the dependencies must be passed to the build script. But we
only pass the optional dependencies if their corresponding features are enabled 21 . If they
are disabled, the value null is passed to the builder (null corresponds to an empty string in
the environment variables). This is to relieve the programmer from having to figure out
at the call site what specific dependencies should be passed for a given feature selection.
After all, that would break abstraction—such decisions should be made by the component’s
Nix expression, not by the caller. Thus, the caller can always pass all dependencies, and
the component’s Nix expression will figure out what dependencies to use. As we will see
in Section 4.1 (page 62), unused dependencies will not be evaluated, let alone be built,
due to the fact that Nix expressions are a lazy language (values are only computed when
needed).

Figure 2.10 shows the builder for the Subversion component, just to give an idea of what
is involved in getting a non-trivial piece of software to work in Nix. This builder is at a
higher level than the one we have seen previously for Hello (Figure 2.7), as it uses the
generic builder, which is a shell function defined by the standard environment that takes
care of building most Unix components with little or no customisation. Most modern Unix
software has a standard build interface consisting of the following sequence of commands:

tar xvf ...sources.tar...

./configure

make

make install
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buildInputs="$openssl $zlib $db4 $httpd $expat" 22
source $stdenv/setup

configureFlags="--without-gdbm --disable-static"

if test "$bdbSupport"; then 23
configureFlags="--with-berkeley-db=$db4 $configureFlags"

fi

if test "$sslSupport"; then

configureFlags="--with-ssl --with-libs=$openssl $configureFlags"

fi

if test "$httpServer"; then

configureFlags="--with-apxs=$httpd/bin/apxs --with-apr=$httpd ..."

makeFlags="APACHE_LIBEXECDIR=$out/modules $makeFlags"

else

configureFlags="--without-apxs $configureFlags"

fi

installFlags="$makeFlags"

genericBuild 24

Figure 2.10.: pkgs/applications/version-management/subversion/builder.sh: Builder for
Subversion

This is in essence what the generic builder does. For many components, a simple call 24 to
the generic builder suffices. The generic builder is discussed in more detail in Section 7.1.2.

So the effort to build Subversion is quite modest: it is a matter of calling Subversion’s
configure script with the appropriate flags to tell it where it can find the dependencies. For
instance, the configure flags to enable and locate Berkeley DB are set in 23 . Actually,
following the Autoconf philosophy of auto-detecting system capabilities, some of the op-
tional features are enabled automatically if the corresponding dependency is found. For
example, Zlib compression support is enabled automatically if configure finds Zlib in the
compiler and linker search path. The variable buildInputs contains a list of components that
should be added to such search paths; thus all components added in 22 are in the scope of
the compiler and linker.

This concludes the brief overview of the Nix expression language. Chapter 4 provides a
more in-depth discussion of the syntax and semantics of the language.

2.3. Package management

Installing Now that we have written Nix expressions for Hello, we want to build and
install the component. That is, we want to reach a state where the Hello component is in
some way “available” to the user. In a Unix system, this means that the application should
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be in the user’s search path:

$ hello

Hello, world!

while in different settings it might mean that the application becomes available as an icon
on the desktop, or as a menu item in the Start Menu.

On Unix, operations such as installation, upgrading, and uninstallation are performed
through the command nix-env, which manipulates so-called user environments—the views
on “available” components (discussed below on page 36). For instance,

$ nix-env -f .../all-packages.nix -i hello

installing `hello-2.1.1'

evaluates the Nix expression in all-packages.nix, looks for a derivation with symbolic name
hello, builds the derivation, and makes the result available to the user. The building of the
derivation is a recursive process: Nix will first build the dependencies of Hello, which
entails building their dependencies, and so on. However, if a derivation has been built
previously, it will not be rebuilt.

Queries It is of course possible to query the set of installed components:

$ nix-env -q

hello-2.1.1

This query prints the set of components in the current user environment. Likewise, it is
possible to query which components are available for installation in a Nix expression:

$ nix-env -f .../all-packages.nix -qa

a52dec-0.7.4

acrobat-reader-7.0

alsa-lib-1.0.9

ant-blackdown-1.4.2

ant-j2sdk-1.4.2

ant-j2sdk-1.5.0

...

It is usually not convenient to specify the Nix expression all the time. Therefore it is possi-
ble to specify a specific Nix expression as the default for package management operations:

$ nix-env -I .../all-packages.nix

All subsequent nix-env invocations will then use this file if no expression is explicitly
specified.

Upgrades and rollbacks When a new version of the set of Nix expressions that contains
Hello comes along, we can upgrade the installed Hello:

$ hello -v

hello - GNU hello 2.1.1
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$ nix-env -f .../all-packages.nix -i hello

upgrading `hello-2.1.1' to `hello-2.1.2'

$ hello -v

hello - GNU hello 2.1.2

This is standard procedure for a package management system, completely analogous to,
e.g., rpm -i hello and rpm -U hello. However, if it turns out that the new version of Hello
does not meet our requirements, we can roll back to the previous version:

$ nix-env --rollback

$ hello -v

hello - GNU hello 2.1.1

The reason that this is possible is that the new version of Hello resides in a different path
in the Nix store, since at least some inputs of the build process of the new Hello must be
different (e.g., its sources and its name attribute). The old one is still there. There is no
destructive upgrading: in the purely functional model, components never change after they
have been built.

User environments User environments are Nix’s mechanism for allowing different users
to have different configurations, and to do atomic upgrades and rollbacks. Clearly, we want
to abstract over store paths; it would not do for users to have to type

$ /nix/store/dpmvp969yhdq...-subversion-1.1.3/bin/svn

to start a program.
Of course we could set up the PATH environment variable to include the bin direc-

tory of every component we want to use, but this is not very convenient since changing
PATH doesn’t take effect for already existing processes. The solution Nix uses is to cre-
ate directory trees of symlinks to activated components (similar to systems such as GNU
Stow [78])6. These are called user environments and they are components themselves
(though automatically generated by nix-env), so they too reside in the Nix store. In Fig-
ure 2.11 the user environment /nix/store/0c1p5z4kda11...-user-env contains a symlink to
just Subversion 1.1.2 (dashed arrows in the figure indicate symlinks). This is what we
would have obtained if we had performed

$ nix-env -i subversion

on a set of Nix expressions that contained Subversion 1.1.2.
This does not in itself solve the problem, of course; a user would not want to type

/nix/store/0c1p5z4kda11...-user-env/bin/svn either. This is why there are symlinks outside
of the store that point to the user environments in the store, e.g., the symlinks default-42-
link and default-43-link in the example. These are called generations since whenever one
performs a nix-env operation, a new user environment is generated based on the current
one. For instance, generation 43 was created from generation 42 when the user executed

6While this approach is rather Unix-specific, user environments can be implemented in many other ways, as is
discussed in Section 7.2.
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/nix/store

5mq2jcn36ldl...-subversion-1.1.2

bin

svn

/nix/var/nix/profiles

default

default-42-link

default-43-link

g32imf68vvbw...-firefox-1.0.1

bin

firefox

0c1p5z4kda11...-user-env

bin

svn

3aw2pdyx2jfc...-user-env

bin

svn

firefox

dpmvp969yhdq...-subversion-1.1.3

bin

svn

switch

/home/alice

.nix-profile

/home/bob

.nix-profile

/home/carol

.nix-profile

carol

carol-23-link

PATH=~/.nix-profile/bin

Figure 2.11.: User environments

$ nix-env -i subversion firefox

on a set of Nix expressions that contained Firefox and a new version of Subversion.
Generations are grouped together into profiles so that different users don’t interfere with

each other (unless they share a profile). For example, the links default-42-link and default-
43-link are part of the profile called default. The file default itself is a symlink that points
to the current generation. When we perform a nix-env operation, a new user environment
and generation link are created based on the current one, and finally the default symlink is
made to point at the new generation.

Upgrades are atomic. This means that a user can never observe that an upgrade is “half-
way through”; the user either sees all the components of the old user environment, or all the
components of the new user environment. This is a major improvement over most deploy-
ment systems which work by destructive upgrading. Due to the purely functional model,
as we are building new components (including user environments, which are components
also), the components in the user’s current user environment are left entirely untouched.
They are not in any way changed. The last step in the upgrade—switching the current
generation symlink—can be performed in an atomic action on Unix.

Different users can have different profiles. The user’s current profile is pointed to by the
symlink ~/.nix-profile (where ~ denotes the user’s home directory). Putting the directory
~/.nix-profile/bin in the user’s PATH environment variables completes the user environments
picture (Figure 2.11), for if we now resolve the chain of symlinks from ~/.nix-profile/bin,
we eventually end up in the bin directory of the current user environment, which in turn
contains symlinks to the activated applications. A user can create or switch to a new profile:

$ nix-env --switch-profile /nix/var/nix/profiles/my-new-profile
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which will simply flip the ~/.nix-profile symlink to the specified profile. Subsequent nix-env
operations will then create new generations in this profile.

Uninstalling and garbage collection A component can be removed from a user envi-
ronment:

$ nix-env -e hello

uninstalling `hello-2.1.1'

$ hello -v

bash: hello: No such file or directory

However, nix-env -e does not actually remove the component from the Nix store. This is
because the component might still be in use by the user environment of another user, or be
a dependency of a component in some environment. More importantly, if the component
were removed, it would no longer be possible to perform a rollback.

To reclaim disk space, it is necessary to periodically run the garbage collector, which
deletes from the store any components not reachable from any generation of any user
environment. (Reachability is defined with respect to the runtime dependencies found by
the hash scanning approach discussed earlier, and in more detail in Section 3.4.) That is,
the generations are roots of the garbage collector.

This means that the Hello component cannot be garbage collected until the old gener-
ations that included it are gone. The following command removes any generations of the
user’s profile except the current:

$ nix-env --remove-generations old

Note that this removes the ability to roll back to any configuration prior to the invocation of
this command. Thus, the user should only perform this operation when sure that rollback
is not necessary.

After we have removed the old generations, the Hello component has become garbage,
assuming no generations of other profiles reach it. Thus an execution of the garbage col-
lector will remove the component from the Nix store:

$ nix-store --gc

deleting `/nix/store/bwacc7a5c5n3...-hello-2.1.1'

...

(The command nix-store performs “low-level” Nix store operations.)
The advantage of garbage collection of components is that users never need to consider

whether some dependency might still be needed. A common phenomenon in many de-
ployment systems is that users are asked to confirm whether it is safe to remove some
component (e.g., “Should Windows delete foo.dll?”). Since Nix ensures reliable depen-
dency information, garbage collection can be safe and automatic. The act of uninstallation
is a logical action concerning only top-level components (i.e., applications), not dependen-
cies that should remain hidden to users.
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outside the Nix store in the Nix store

Nix

expressions

translation

(nix-instantiate)

store

derivations

building

(nix-store --realise)

store derivation

outputs

Figure 2.12.: Two-stage building of Nix expressions

2.4. Store derivations

So how do we build components from Nix expressions? This could be expressed directly
in terms of Nix expressions, but there are several reasons why this is a bad idea. First, the
language of Nix expressions is fairly high-level, and as the primary interface for develop-
ers, subject to evolution; i.e., the language might change to accommodate new features.
However, this means that we would have to be able to deal with variability in the Nix
expression language itself: several versions of the language would need to be able to co-
exist in the store. Second, the richness of the language is nice for users but complicates
the sorts of operations that we want to perform (e.g., building and deployment). Third,
Nix expressions cannot easily be identified uniquely. Since Nix expressions can import
other expressions scattered all over the file system, it is not straightforward to generate an
identifier (such as a cryptographic hash) that uniquely identifies the expression. Finally, a
monolithic architecture makes it hard to use different component specification formalisms
on top of the Nix system (e.g., we could retarget Makefiles to use Nix as a back-end).

For these reasons Nix expressions are not built directly; rather, they are translated to
the more primitive language of store derivations, which encode single component build
actions. This is analogous to the way that compilers generally do the bulk of their work
on simpler intermediate representations of the code being compiled, rather than on a full-
blown language with all its complexities. Store derivations are placed in the Nix store, and
as such have a store path too. The advantage of this two-level build process is that the paths
of store derivations give us a unique identification of objects of source deployment, just as
paths of binary components uniquely identify objects of binary deployment.

Figure 2.12 outlines this two-stage build process: Nix expressions are first translated
to store derivations that live in the Nix store and that each describe a single build action
with all variability removed. These store derivations can then be built, which results in
derivation outputs that also live in the Nix store.

The exact details of the translation of Nix derivation expressions into store derivations is
not important here; the process is fully described in Section 5.4. What matters is that each
derivation is translated recursively into a store derivation. This translation is performed
automatically by nix-env, but it can also be done explicitly through the command nix-
instantiate. For instance, supposing that foo.nix is a Nix expression that selects the value
hello from all-packages-generic.nix in Figure 2.8, then applying nix-instantiate will yield
the following:

$ nix-instantiate foo.nix

/nix/store/1ja1w63wbk5qrscwg4wmzk9cbri4iykx-hello-2.1.1.drv

That is, the expression foo.nix is evaluated, and the resulting top-level derivation is trans-
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{ output = "/nix/store/bwacc7a5c5n3...-hello-2.1.1" 25
, inputDrvs = { 26

"/nix/store/7mwh9alhscz7...-bash-3.0.drv",
"/nix/store/fi8m2vldnrxq...-hello-2.1.1.tar.gz.drv",
"/nix/store/khllx1q519r3...-stdenv-linux.drv",
"/nix/store/mjdfbi6dcyz7...-perl-5.8.6.drv" 27 }

}
, inputSrcs = {"/nix/store/d74lr8jfsvdh...-builder.sh"} 28
, system = "i686-linux" 29
, builder = "/nix/store/3nca8lmpr8gg...-bash-3.0/bin/sh" 30
, args = ["-e", "/nix/store/d74lr8jfsvdh...-builder.sh"] 31
, envVars = { 32

("builder", "/nix/store/3nca8lmpr8gg...-bash-3.0/bin/sh"),
("name", "hello-2.1.1"),
("out", "/nix/store/bwacc7a5c5n3...-hello-2.1.1"),
("perl", "/nix/store/h87pfv8klr4p...-perl-5.8.6"), 33
("src", "/nix/store/h6gq0lmj9lkg...-hello-2.1.1.tar.gz"),
("stdenv", "/nix/store/hhxbaln5n11c...-stdenv-linux"),
("system", "i686-linux"),
("gtk", "/store/8yzprq56x5fa...-gtk+-2.6.6"),
}

}

Figure 2.13.: Store derivation for the hello attribute in Figure 2.8

lated to a store derivation which is placed in /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv. All
input derivations of hello are recursively translated and placed in the store as well.

The store derivation in /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv is shown in Fig-
ure 2.137. It lists all information necessary to build the component, with references to
the store derivations of dependencies:

25 The output field specifies the path that will be built by this derivation, if and when it
is built8. It is computed essentially by hashing the store derivation with the output
field cleared.

26 The inputDrvs field contains the paths of all the input derivations. These have to be
built before we can build this derivation.

28 The inputSrcs field contains the paths of all input sources in the Nix store. The
Hello Nix expression in Figure 2.8 referred to a local file builder.sh. This file has
been copied by nix-instantiate to the Nix store, since everything used by the build
process must be inside the Nix store to prevent undeclared dependencies.

7This is a pretty-printed representation of the actual store derivation, which is encoded as an ATerm [166].
Figure 5.8 on page 105 shows the actual ATerm.

8This field exists in the extensional model described in Chapter 5, where the output path is computed in advance,
but not in the intensional model described in Chapter 6, where it is only known after the derivation has been
built.
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29 The system field specifies the hardware and operating system system on which the
derivation is to be built. This field is part of the hash computation, so derivations
for different systems (e.g., i686-linux versus powerpc-darwin) result in different store
paths.

30 The builder field is the program to be executed. The reader might wonder about the
apparent mismatch between the builder declared in Figure 2.6 and the one specified
here. This is because the function stdenv.mkDerivation massages the arguments it
receives a bit, substituting a shell binary as the actual builder, with the original shell
script passed to the shell binary as a command line argument.

31 The args field lists the command line arguments to be passed to the builder.

32 The envVars field lists the environment variables to be passed to the builder.

Note that inputDrvs and envVars specify different paths for corresponding depen-
dencies. For example, Hello’s Perl dependency is built by the derivation stored in
/nix/store/mjdfbi6dcyz7...-perl-5.8.6.drv 27 . The output path of this derivation is /nix/store/-
h87pfv8klr4p...-perl-5.8.6 33 .

Building store derivations Store derivations can be built by calling the command nix-
store --realise, which “realises” the effect of a derivation in the file system. It builds the
derivation (if the output path of the derivation does not exist already), and prints the output
path.

$ nix-store --realise /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

...

/nix/store/bwacc7a5c5n3...-hello-2.1.1

Nix users do not generally have to deal with store derivations. For instance, the nix-env
command hides them entirely—the user interacts only with high-level Nix expressions,
which is really just a fancy wrapper around the two commands above. However, store
derivations are important when implementing deployment policies. Their relevance is that
they give us a way to uniquely identify a component both in source and binary form,
through the paths of the store derivation and the output, respectively. This can be used to
implement a variety of deployment policies, as we will see in Section 2.5.

Closures revisited A crucial operation for deployment is to query the closure of a store
path under the dependency relation, as discussed in Section 2.1. Nix maintains this infor-
mation for all paths in the Nix store. For instance, the closure of the Hello component can
be found as follows:

$ nix-store -qR /nix/store/bwacc7a5c5n3...-hello-2.1.1/bin/hello

/nix/store/72by2iw5wd8i...-glibc-2.3.5

/nix/store/bg6gi7s8mxir...-linux-headers-2.6.11.12-i386

/nix/store/bwacc7a5c5n3...-hello-2.1.1

/nix/store/q2pw1vn87327...-gcc-3.4.4
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This means that when we deploy this instance of Hello, we must copy all four of the paths
listed here9. When we copy these paths, we have binary deployment. It should be pointed
out that /nix/store/h87pfv8klr4p...-perl-5.8.6 is not in the closure, since it is not referenced
from the Hello binary or any of the paths referenced by it. That is, Perl is exclusively a
build-time dependency.

Similarly, we can query the closure of the store derivation:
$ nix-store -qR /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

/nix/store/0m055mdm0v5z...-perl-5.8.6.tar.bz2.drv

/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

/nix/store/d74lr8jfsvdh...-builder.sh

... (98 more paths omitted) ...

Copying these paths gives us source deployment, since the store derivations describe
build actions from source.

It is also possible to combine the two:
$ nix-store -qR --include-outputs \

/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

/nix/store/0m055mdm0v5z...-perl-5.8.6.tar.bz2.drv

/nix/store/h87pfv8klr4p...-perl-5.8.6

/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

/nix/store/bwacc7a5c5n3...-hello-2.1.1

/nix/store/d74lr8jfsvdh...-builder.sh

... (155 more paths omitted) ...

The --include-outputs flag causes the closures of the outputs of derivations to be in-
cluded. It is worth noting that this set is more than the union of the two sets above, since
there are many output paths of derivations that are not in the closure of the Hello binary.
For instance, though the Hello binary does not reference Perl, the Perl binary is included
here because its derivation is included.

2.5. Deployment models

What we have described above is not deployment—it is build management combined with
local package management. The calls to nix-env build components locally, and construct
user environments out of the build results. To perform actual software deployment, it is
necessary to get the Nix expressions to the client machines. Nix in itself does not provide
any specific way to do so. Rather, it provides the mechanisms to allow various deployment
policies. The commands nix-instantiate and nix-store provide the fundamental mechanisms.
(The command nix-env implemented on top of these already implements a bit of policy,
namely, user environments.)

Here are some examples of deployment models implemented and used in practice to
distribute the Nix expressions of the Nix Packages collection:

• Manual download. A user can manually download releases of the Nix Packages
collection as tar archives, unpack them, and apply nix-env to install components.

9In case the reader is wondering: the quite unnecessary dependency on linux-headers is through glibc; see
Section 6.7. The dependency on gcc is entirely unnecessary and does not occur in the “production” version
of Hello, which uses the utility patchelf (page 179) to prevent this retained dependency.

42



2.5. Deployment models

The downside to this approach is that it is rather laborious; in particular, it is not
easy to stay up-to-date with new releases.

• Updating through a version management system. As a refinement to the previous
model, the set of Nix expressions can be distributed through a version management
system. For example, Nixpkgs can be obtained from its Subversion repository. After
the initial checkout into a local working copy, staying up-to-date is a simple matter
of running an update operation on the working copy. An added advantage is that it
becomes easy to maintain local modifications to the Nix expressions.

• Channels. A more sophisticated model is the notion of channels. A channel is
a URL that points to a tar archive of Nix expressions. A user can subscribe to a
channel:

$ nix-channel --add http://server/channels/nixpkgs-stable

Then, the command

$ nix-channel --update

downloads the Nix expressions from the subscribed channels and makes them the
default for nix-env operations. That is, an operation such as

$ nix-env -i firefox

will install a derivation named firefox from one of the subscribed channels. In par-
ticular, it is easy to keep the entire system up-to-date:

$ nix-channel --update

$ nix-env -u '*'

where nix-env -u ’*’ updates all installed components in the user environment to the
latest versions available in the subscribed channels.

• One-click installations. When a user wants to install a specific program, by far
the easiest method is to simply install it by clicking on it on some distribution web
page. Of course, this should also install all dependencies. An example of such
one-click installations is shown in Figure 2.14 (along with direct download of the
Nix expressions, and channel subscription information). Users can click on links on
release web pages to install specific components into their user environments. The
links lead to small files containing the information necessary to install the component
(e.g., Nix expressions), while the installation of the component is performed by a
simple tool associated with the MIME type [74] of those files.

Chapter 7 looks at the wide variety of deployment policies in much greater detail.
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Figure 2.14.: Deployment policies: direct download, channels, and one-click installation

2.6. Transparent source/binary deployment

The Nix model as described above is a source deployment model. Nix expressions describe
how to build components from source10. A source deployment model is convenient for
deployers because they do not need to create binary packages explicitly. It also gives users
the freedom to make local modifications and feature selections.

However, building all dependencies is rather slow. For the Hello component in Nix
Packages11, it entails building 63 derivations, including the builds of

hello-2.1.1, stdenv-linux, gcc-3.4.4, bash-3.0, gnutar-1.15.1, curl-7.14.0,
binutils-2.16.1, gnupatch-2.5.4, gnused-4.1.4, patchelf-0.1pre2286, linux-
headers-2.6.11.12-i386, zlib-1.2.2, bzip2-1.0.3, findutils-4.2.20, gnugrep-
2.5.1a, coreutils-5.2.1, perl-5.8.6, gcc-3.4.4, gnumake-3.80, gzip-1.3.3, gawk-
3.1.4, pcre-6.0, glibc-2.3.5, diffutils-2.8.1, gcc-3.4.4,

the fetchurl downloads of the sources of those packages, and some derivations for the boot-
strapping of stdenv (e.g., the statically linked compiler used to compile gcc-3.4.4); with

10As we will see in Section 7.1.4, it is possible to support binary-only packages by using a “trivial” builder
that just fetches a binary distribution of a component, unpacks it and copies it to $out. This is how the Nix
Packages collection supports components such as Adobe Reader.

11Data based on nixpkgs-0.9pre3252 on i686-linux.

44



2.6. Transparent source/binary deployment

downloads of source archives totalling 130 megabytes; and with the build results occupy-
ing 357 megabytes of disk space (although most of it can be garbage collected).

Thus, source deployment is clearly awful for most end-users, who do not have the re-
sources or patience for a full build from source of the entire dependency graph.

However, Nix allows the best of both worlds—source deployment and binary deploy-
ment—through its transparent source/binary deployment model. The idea is that pre-built
derivation outputs are made available in some central repository accessible to the client
machines, such as a web server or installation CD-ROM. For instance, a component dis-
tributor or system administrator can pre-build components, then push (upload) them to a
server using PUT requests:

$ nix-push http://server/dist/ $(nix-instantiate foo.nix)

This will build the derivations in foo.nix, if necessary, and upload it and all its dependencies
to the indicated site. For instance, the path /nix/store/mkmpxqr8d7f7...-firefox-1.0 will be
archived and compressed into an archive yq318j8lal09...-firefox.nar.bz2 and uploaded to
the server. Such a file is called a substitute, since a client machine can substitute it for a
build. The server provides a manifest of all available substitutes. An example entry in the
manifest is12:

{ StorePath: /nix/store/mkmpxqr8d7f7...-firefox-1.0

NarURL: http://server/dist/yq318j8lal09...-firefox.nar.bz2

Size: 11480169 }

which states that to create store path /nix/store/mkmpxqr8d7f7...-firefox-1.0, Nix can down-
load and unpack URL http://server/dist/yq318j8lal09...-firefox.nar.bz2.

To use these substitutes, client machines must register the fact that they are available
using the command nix-pull:

$ nix-pull http://server/dist

This does not actually download any of the substitutes, it merely registers their availability.
When the user subsequently attempts to install a Nix expression, and Nix when building
some store path p notices that it knows a substitute for p, it will download the substitute
and unpack it instead of building from source.

Thus, from a user perspective, source deployment automatically optimises into binary
deployment. This is good: binary deployment can be considered a partial evaluation of
source deployment with respect to a specific platform, and such optimisations should be
“invisible”.

However, if the user has made modifications to parts of the Nix expression, it is possible
that some or all of the store paths will be different. In that case, the substitutes fail to
be applicable and Nix will build from source. Thus, binary deployment automatically
“degrades” back to source deployment.

The transparent source/binary model therefore combines the flexibility of source de-
ployment systems such as Gentoo with the efficiency of binary deployment systems such
as RPM.
12This is somewhat simplified. The full details of nix-push manifests are in Section 7.3.
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Of course, the deployment models described in Section 2.5 support transparent source/-
binary deployment. For instance, a Nix channel contains not just a set of Nix expressions,
but also the URL of a manifest that clients can pull when they update from the channel.
Thus, subscribers to the channel automatically get binary deployment for those derivations
in the channel that have been pre-built.
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3. Deployment as Memory Management

The previous chapter introduced the Nix system. It obtains isolation and non-interference
between components using a Nix store that stores components under file names that contain
a unique cryptographic hash of the component. However, some of the underlying concepts
might seem a bit suspicious! For instance, storing components in an essentially flat, rigid
“address space” of components is very different from the way software is typically stored
in most operating systems1. And the hash scanning technique to identify dependencies
clearly cannot work in all circumstances.

The purpose of this chapter is to “derive” the basic design of the Nix store by relating
the main issues in software deployment to those in memory management in conventional
programming languages. As we shall see, conventional deployment tools treat the file sys-
tem as a chaotic, unstructured component store, similar to how an assembler programmer
would treat memory. In contrast, modern programming languages impose a certain disci-
pline on memory, such as rigidly defined object layouts and prohibitions against arbitrary
pointer formation, to enable features such as garbage collection and pointer safety. The
idea is that by establishing a mapping between notions in the two fields, solutions from
one field carry over to the other. In particular, the techniques used in conservative garbage
collection serve as a sort of apologia for the hash scanning approach used to find runtime
dependencies.

3.1. What is a component?

It is useful to first say some things about what it is that we are deploying. Of course,
we deploy software (although in Chapter 9 on service deployment, we will also see some
things being deployed that cannot be called software proper), but what are the units of
deployment? That is, what do we call the smallest meaningful artifacts that are subject to
deployment? It is quite customary in some communities to call these packages, but this
term has the problem that it implies that the artifact is in packaged form. For instance, a
.RPM file is a package, but what do we call the corresponding installed object? In RPM
terminology, this is also a package, and so the term is ambiguous.

In the Component-Based Software Engineering (CBSE) community, the term compo-
nent is used for units of deployment. Like some other terms in computer science (such as
object), this term is overloaded almost to the point of uselessness. In fact, Czyperski [154,
Chapter 11] surveys fourteen different definitions. Some definitions are not meaningfully
distinguishable from the notion of a module, or are used to identify any code reuse mech-
anism.

Despite the multitude of definitions, I shall use the term anyway, because I believe that
the essential aspect that should be captured by a definition of components is deployment.

1Indeed, no Linux distribution based on Nix will ever be compliant with the Linux Standards Base [82, 81]!
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Otherwise, the notion of component does not essentially add anything not already provided
by concepts such as module, class, method, function, and other organisational structures
provided by programming languages. Components in CBSE have many other concerns
than deployment aspects, such as interfaces, contracts, composition techniques, verifica-
tion of performance and other extra-functional requirements, and so on. However, a dis-
cussion at CBSE-2005 revealed that packaging and deployment were the only aspects on
which there was a consensus that they should be provided by a component-based system.

In this thesis, I will use the following definition of “software component”:

• A software component is a software artifact that is subject to automatic composition.
It can require, and be required by, other components.

• A software component is a unit of deployment.

The first property is of course entailed by the etymology of the word component, except
for the stipulation that a composition can be established automatically. Thus, source code
fragments printed in a book, while composable through human intervention, are not com-
ponents. The second property implies that the purpose of the notion of a component is to
be the principal object of deployment.

This definition has some important implications. For instance, it does not say any-
thing about whether components are in “source” or “binary” form, since such a distinction
is rather technology-specific (e.g., what does it mean for interpreted languages such as
Python?). But since it has to be automatically composable, it must come with all the nec-
essary infrastructure to support automatic composition. For instance, mere source code is
not a component, but source code with the necessary meta-information—such as Make-
files, configuration and build scripts, deployment descriptors, and so on—is a component.
So a Python source file in itself is not a component. But it is when placed in an RPM pack-
age or combined with a Nix expression, since that meta-information makes the component
available for automatic composition.

A subtle point is what we mean by “software.” Of course, software is a specification that
can be executed automatically by a computer (possibly with the aid of other software, such
as an interpreter), but not every constituent part of a software system is executable; some
of it (such as data) is an adjunct to execution. This means that not all software components
need to contain executable code themselves, but are intended for ultimate composition with
an executable component that uses them. For instance, in a software system with an online
help feature, it might be useful to split off the online help into a separate component so that
it can be installed optionally.

The definition above can be considered the greatest common denominator of a number
of influential definitions. Czyperski [154, Section 4.1.5] gives the following definition:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.”

The important aspects of this definition are the following:

• A component is a unit of independent deployment. Since it is a unit, it does not
have to support partial deployment—the component must be deployed in its entirety.
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Since it is independently deployable, it should not cause interference with its target
environment, such as other components.

• Thus it must have explicit context dependencies only, since otherwise it would place
requirements (such as component dependencies) on its target environment that are
not formally specified by its deployment metadata.

• It has contractually specified interfaces, which enable it to be subject to third-party
composition, i.e., it is possible for other people’s components to use the component.

• It has no externally observable state. Different uses of the component over time
should not interfere with each other. Note that this does not mean that the code of
the component must have no side effects, i.e., should be written in a purely func-
tional language. It is perfectly fine for an execution involving the component, e.g.,
the classes and objects loaded from a component, to have side effects. But the com-
ponent should not modify its on-disk representation or other static resources in a way
that affects future uses of the component. This is exactly the case with Nix compo-
nents: they can be entirely impure dynamically, but their static representation—the
files on disk—never changes after they have been built.

These properties do not always hold for the things that one might want to deploy. For
instance, Mozilla Firefox 1.0 (unless specially prodded not to do so) wants to make modifi-
cations to some of its own files when started for the first time, violating the requirement of
having no externally observable state. This is bad because it makes security difficult (the
files in question should be writable by all potential users), and hinders proper identification
in the sense of configuration management (since the “same” component has different con-
tents over time). Likewise, many components are not intended for third-party composition,
but are rather specifically tied to certain other components and do not have a well-defined
interface. The reason why such components are separate, rather than combined into a sin-
gle component, is typically to allow optional functionality to be omitted, or for licensing
reasons (e.g., some clients not being entitled to access the full feature set of a system).

This thesis’s definition differs from Czyperski’s in a number of ways:

• It does not require explicit context dependencies, it merely states that components
can have dependencies. Many components have implicit dependencies—which is
what makes correct deployment so difficult. Of course, to ensure correct deploy-
ment, it is necessary to make implicit dependencies explicit.

• It does not require the possibility of third-party composition. As explained above,
many components are not in fact usefully reusable by third parties.

• It does not require contractually specified interfaces. It is enough for components to
be composable automatically, which requires some kind of formal interface (since
it can be used automatically), but this can be as weak as a symbol table in an ELF
library [160], or the existence of a named function in a Perl module.

Czarnecki and Eisenecker [40] have an even more minimalistic definition: components
are simply the “building blocks” of software systems that should be composable as easily
and flexibly as possible in order to maximise reuse and minimise duplication. However,
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this definition has the problem that it makes a component nothing more than a general term
for reuse mechanisms, as stated above. This is intentional: the authors feel that component
is a “natural concept” for which it is hard to give a rigid definition. But a definition that is
overly broad is not very useful.

Meyer [119] defines a component as a “modular unit” that can be used by other compo-
nents, possesses an “official usage description” enabling its use by other components, and
is not “tied to any fixed set of clients”. The definition used here does not have the latter
two requirements (many components have poorly defined or missing usage descriptions,
or are specific to a particular client, as argued above).

So the definition of component used in this thesis is quite minimal. I do not mean to
imply that a stronger notion of component is not useful or appropriate in many cases. For
instance, component technologies that require strong contracts from components are very
valuable. But such kinds of “high level” composition aspects are not the subject of this
thesis. This thesis is about the “low level” aspect of storage of components: how can we
store components so that they do not interfere with each other, that their dependencies are
known, and so on? That is, it is about components in the file system.

Components in the file system In this thesis, I shall further restrict the notion of a
software component to things that have an independent representation in the file system,
i.e., a component consists of a set of files. Of course components do not have to exist as
discrete objects in the file system. They might be stored in a database (as suggested, e.g.,
by the Java Language Specification [79, Section 7.2.2]). But this is quite rare, so we will
not consider it.

Through the file system, components can require functionality from other components,
and they can provide it. Thus, components need to be plugged into each other, i.e., be
composed. There are many mechanisms by which a composition can be realised, such
as static linking, dynamic linking, inclusion of source files, and so on; and these are just
general classes of composition technologies. Concrete realisation mechanisms are legion:
Unix static libraries, ELF dynamic libraries, Java JAR files, C preprocessor directives,
.NET assemblies, Perl modules, configuration files, etc. These mechanisms also have
various binding times: some are typically used at build time, others at runtime, with the
more nebulous notions of packaging time and installation time thrown in for good measure.

But what they all have in common is that the composition must be established in the
file system. That is, since the components exist in the file system, to compose them,
the composition mechanism must be able to find them in the file system. This aspect of
composition—establishing the “physical” composition,” so to speak—is often overlooked
in the component-based software engineering literature as well as in programming sys-
tems. This is unfortunate, since the difficulty in correctly and efficiently establishing and
managing the composition in the file system is the major source of deployment problems.

3.2. The file system as memory

In this section I recast the deployment problems identified in the introduction in terms of
concepts from the domain of memory management in programming languages. That we
can do this is not surprising: after all, file systems on the one hand and RAM on the other
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hand are just two different levels in the storage hierarchy. Where programs manipulate
memory cells, deployment operations manipulate the file system. This analogy reveals that
the safeguards against abuse of memory applied by programming languages are absent in
deployment, and suggests that we can make deployment safe by trying to impose similar
safeguards.

Components, as defined above, exist in the file system and can be accessed through
paths, sequences of file names that specify a traversal through the directory hierarchy,
such as /usr/bin/gcc. We can view a path as an address. Then a string representing a path
is a pointer, and accessing a file through a path is a pointer dereference. Thus, component
interference due to file overwriting can be viewed as an address collision problem: two
components occupy overlapping parts of the address space.

Furthermore, we can view components as representations of values or objects. Just as
objects in a programming language can have references to other objects, so components
can have references to other components. If dereferencing a pointer is not possible because
a file does not exist, we have the deployment equivalent of a dangling pointer.

A component A is dependent on a component B if the set of files that constitutes A
enables an execution involving A to dereference pointers to the files constituting B. It
enables an execution to dereference B (rather than that it necessarily must dereference B),
since A itself might not be executed or even be executable; e.g., when A is a configuration
file containing a path to B, and this file is read by some other component C.

For example, suppose that we have an application that is dynamically linked against a
file /lib/libc.so, the GNU C library on Linux systems. This means that the executable image
of the application contains an instruction to the dynamic linker to load the file /lib/libc.so.
Thus, the application enables a pointer to that file, since execution of the application will
cause a dereference of that file when it is started. But if the file is missing, the deployed
application contains a dangling pointer. Such dangling pointers are the result of incomplete
deployment, and they must be prevented.

To prevent dangling pointers, we should consider the various ways through which a
component A can cause a dereference of a pointer to another component B. Since compo-
nents are analogous to objects, we can provide analogues to the ways in which a method
of a class can obtain and dereference a pointer to another object.

First, a pointer to B can be obtained and dereferenced by A at runtime. This is a form
of late binding, since the pointer is not passed in when it is built, but rather when it is
executed. This may happen through environment variables (such as the PATH program
search path on Windows and Unix), program arguments, function arguments (in the case
of a library), registry settings, user interaction, and so on. Conceptually, this is similar to
the following pseudo-Java:

class Foo {
Foo() {}
int run(Bar y) { return y.doIt(); }

}

We can consider the constructor method Foo() to be the build time of the objects of class
Foo, while the method run corresponds to the runtime. Thus any arguments passed to the
constructor are analogous to build-time dependencies, while arguments passed to run are
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analogous to runtime dependencies. In this case, an instance of Foo obtains a pointer to an
instance of Bar at runtime.

Second, a pointer to B can be obtained and dereferenced by A at build time. In this
case, a pointer is passed in at build-time and is completely “consumed”, meaning that B is
not needed subsequently. It can therefore no longer cause a dangling pointer. Examples
include pointers to static libraries or the compiler, which are not usually retained in the
result. This is comparable to a constructor that uses a pointer to another object to compute
some derived value but that does not store the pointer itself:

class Foo {
int x;
Foo(Bar y) { x = y.doIt(); }
int run() { return x; }

}

Third, a pointer to B can be obtained by A at build time and dereferenced at runtime.
In this case, a pointer to B is passed to and saved in the build process that constructed A,
and is dereferenced during program execution. This is the notion of retained dependencies
described on page 23. It happens often with Unix-style dynamically linked libraries: the
build of an application stores the full path to the library in the RPATH of the application
binary (see page 23), which is used to locate the library at program startup. This is equiv-
alent to the constructor of an object storing a pointer that was passed in, which is later
dereferenced:

class Foo {
Bar x;
Foo(Bar y) { x = y; }
int run() { return x.doIt(); }

}

Here, the execution of the constructor is similar to the construction of a component, and
the execution of method run() is similar to the use of a component.

Finally, and orthogonal to the previous methods, a pointer to B can be obtained using
pointer arithmetic. Since paths are represented as strings, any form of string manipulation
such as concatenation may be used to obtain new paths. If we have a pointer to /usr/bin,
then we may append the string gcc to obtain /usr/bin/gcc. Note that the names to be ap-
pended may be obtained by dereferencing directories, that is, reading their contents.

It follows from the above that it is hard to find the set of pointers that can be dereferenced
by a component. First, pointers may already be present in the source. Second, pointers
passed in at build-time may or may not be stored in the component. Obviously, we do not
want to distribute a compiler along with an application just because it was used to build
it—but other build-time components, such as dynamic libraries, should be. Finally, pointer
arithmetic can be used to obtain new pointers in uncontrolled ways. For correct software
deployment it is essential that no dangling pointers can occur. Thus, we need a method to
prevent these.

Figure 3.1 summarises the mapping of concepts between the domain of memory man-
agement in programming language implementation on the one hand, and deployment on
the other hand. (The third set of correspondences is first discussed in Section 3.4.)
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Programming Language Domain Deployment Domain
Concepts

memory ⇔ disk
objects (values) ⇔ components

addresses ⇔ path names
pointer dereference ⇔ I/O

pointer arithmetic ⇔ string operations
dangling pointer ⇔ reference to absent component

object graph ⇔ dependency graph
Kinds of dependencies

calling already constructed object with
reference to other object

⇔ runtime dependency through late bind-
ing

calling constructor with reference to
other object, not stored

⇔ build-time dependency

calling constructor with reference to
other object, stored

⇔ retained dependency

Pointer discipline vs. deployment styles
languages with total absence of pointer
discipline (e.g., assembler)

⇔ typical Unix-style deployment

languages with enough pointer disci-
pline to support conservative garbage
collection (e.g., C, C++)

⇔ Nix

languages with full pointer discipline
(e.g., Java, Haskell)

⇔ an as-yet unknown deployment style
not enabled by contemporary operat-
ing systems

Figure 3.1.: Deployment / memory management analogies

3.3. Closures

As noted above, dangling pointers in components are a root cause of deployment failure.
Thus, to ensure successful software deployment, we must copy to the target system not just
the files that make up the component, but also all files to which it has pointers. Formally,
the set of files to be included in the distribution of a component is the closure of the set
of files in the component under the points-to relationship. Informally, a file that is part of
a component is characterised as a tuple (p,c) where p is the path where the file is stored,
and c is the contents required at that path. The contents of a path include not just the file
contents if p is a regular file, but also metadata such as access permissions. In addition,
the file may be a directory, in which case the contents include a mapping from directory
entry names to the contents of these directory entries. This will be made more precise in
Section 5.2.1.

Now the closure of a set of files C is the smallest set C′ ⊇C satisfying

∀(p,c) ∈C′ : ∀pre f ∈ references(c) : ∃(p′,c′) ∈C′ : pre f = p′

where references(c) denotes the set of pointers contained in the contents of c. That is, if a
path p is in the closure, then the paths to which it has pointers must be as well.
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By definition, a closure does not contain dangling pointers. A closure can therefore
be distributed correctly to and deployed on another system. Unfortunately, as mentioned
in Section 3.2, it is not possible in general to determine the set references(c) because of
retained dependencies and pointer arithmetic. In the next section, I propose a heuristic
approach to reliably determine this set.

3.4. A pointer discipline

In the previous section we saw that correct deployment without dangling pointers can be
achieved by deploying file system closures. Unfortunately, determining the complete set
of pointers is hard.

In the domain of programming languages, we see the same problem. Languages such as
C [106, 100] and C++ [153, 101] allow arbitrary pointer arithmetic (adding or subtracting
integers to pointers, or casting between integers and pointers). In addition, compilers for
these languages do not generally emit runtime information regarding record and stack lay-
outs that enable one to determine the full pointer graph. Among other things, this makes
it impossible to implement garbage collectors [104, 179] that can accurately distinguish
between garbage and live objects. Garbage collectors consist of two logical phases [179].
In the detection phase, the collector discovers which objects on the heap are “live,” i.e.,
reachable by following pointers from the stack, registers, and global variables. In the
reclamation phase, all objects that are not live (i.e., dead) are freed. To find live objects in
the detection phase, it must be clear what the pointers are. For instance, the collector must
know what words on the stack are pointers, and not, say, integers.

Other languages address this problem by imposing a pointer discipline: the layouts
of memory objects (including the positions of pointers) are known, and programs cannot
manipulate pointers arbitrarily. For example, Java does not permit casting between integers
and pointers, or direct pointer arithmetic. Along with runtime information of memory
layouts, this enables precise determination of the pointer graph.

For file systems the problem is that arbitrary pointer arithmetic is allowed and that we
do not know where pointers are stored in files. Certainly, if we restrict ourselves to compo-
nents consisting of certain kinds of files, such as Java class files, we can determine at least
part of the pointer graph statically, for instance by looking at the classes imported by a Java
class file. However, this information is still not sufficient due to the possibility of dynamic
class loading. Since the dependency information cannot be guaranteed to be complete and
because this technique is not generally applicable, this approach does not suffice.

The solution to proper dependency identification comes from conservative garbage col-
lection [15, 14]. This is a technique to provide garbage collection for languages that have
pointer arithmetic and no runtime memory layout information, such as C and C++. Conser-
vative garbage collection works by constructing a pointer graph during the detection phase
by assuming that anything that looks like a valid pointer, is a valid pointer. For instance,
if we see a bit pattern in memory corresponding to a pointer to some address p, and p is
in fact part of an allocated part of memory, the object containing p is considered live. Of
course, this assumption might be wrong: the bit pattern might simply encode an integer, a
floating point number, and so on. But conservative garbage collection errs on the side of
caution: a misclassification causes a possibly dead object to be considered live, preventing
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it from being reclaimed. The worst that can happen as a result is that we might run out of
memory. Since misclassifications are rare, such cases are unlikely to occur2.

Since there is a correspondence between objects in memory and files in a file system, we
would like to borrow from conservative garbage collection techniques. That is, we want
to borrow the concept of conservatively scanning for pointers from the detection phase.
Specifically, we want to scan the contents of files (of which we do not know the layout),
and if we see a string of characters that looks like a file name, we assume that the file being
scanned has a pointer to the file indicated by the name. But there are two problems with
this idea. First, there might be many false positives: the fact that the strings usr, bin and
gcc occur in a component, does not necessarily imply that the component is dependent
on /usr/bin/gcc). But more importantly, arbitrary pointer arithmetic makes it possible that
even files that are not referenced, might still be dereferenced at runtime through pointers
computed at runtime.

There is a reason that conservative garbage collection works in languages such as C—
namely, that they actually do have a minimal pointer discipline. For instance, pointer
arithmetic is not allowed to increment or decrement a pointer beyond the boundaries of
the object that it originally pointed to. Of course, the compiler has no way to verify the
validity of such arithmetic, but programmers are well aware of the fact that a C fragment
like

char * p = malloc(100);

...

char * q = p + 200; /* ouch! */

printf("%c", *q);

is quite illegal. Thus, correct C programs will work with a conservative garbage collector.
But even this minimal pointer discipline is absent in general component storage in the

file system! Tools can perform arbitrary pointer arithmetic on paths to produce pointers to
any file in the file system. Most tools don’t, but even in a limited sense it is a problem. For
instance, once the C compiler has a pointer to /usr/include, it will happily dereference that
directory and produce pointers to all the files in it. In a way, how we store components
in the file system in conventional deployment systems is reminiscent of programming in
assembler—there is perfect freedom, and because of that freedom, all bets are off and we
can make no statements about the structure of memory objects (see the bottom third of
Figure 3.1).

So we have to impose a discipline on the storage of components. There are two aspects
to this:

• Pointers have to be shaped in such a way that they are reliably recognisable. Short
strings such as bin offer too much opportunity for misdetection.

• Components have to be separated from each other. The constituent files of multiple
components should not be mixed. Otherwise a tool can “hop” from one component
to another through pointer arithmetic.

2But note that a system using conservative garbage collection can be vulnerable to denial-of-service attacks
if an attacker has an opportunity to feed it data (e.g., strings) that contains many bit patterns that might be
misidentified as pointers.
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The Nix store introduced in Section 2.1 satisfies both requirements. Components are
stored in isolation from each other in paths such as /nix/store/bwacc7a5c5n3...-hello-2.1.1,
which include long, distinctive strings such as bwacc7a5c5n3.... The latter is suitable for
pointer scanning, contrary to, say, hello. Thus, if we find the ASCII string bwacc7a5c5n3...
in a different component, we can conclude that there is a dependency; and if we don’t find
the string, we can conclude that no such dependency exists between the two components.

As noted in Section 3.2, the build of a component may retain a pointer to another com-
ponent, thus propagating a dependency to later points on the deployment timeline. In con-
ventional deployment systems, these dependencies have to be specified separately, with all
the risks inherent in manual specification. By analysing those files of a component that are
part of a distribution (in source or binary form) or of an installation, we can automatically
detect timeline dependencies, such as build-time and runtime dependencies.

Pointer hiding What are the risks of this approach, i.e., when does it fail to detect depen-
dencies? It has exactly the same limitation as conservative garbage collection in program-
ming languages, namely, the failure to detect pointers due to pointer hiding. Pointer hiding
occurs when a pointer is encoded in such a way that it is not recognised by the scanner (a
false negative). For example, in C we can do the following:

char * p = malloc(...);

unsigned int x = ~((unsigned int) p); /* invert all bits */

p = 0;

... /* run the collector */

p = (char *) ~x;

That is, we allocate a pointer, then cast it to an integer, flip all the bits in the integer, and
clear the original pointer. Later, we invert the integer again, and cast it back to a pointer,
thus recovering the original pointer. However, if the garbage collector runs in between, it
will not be able to detect that the referenced memory object if alive, since x does not look
like a pointer to that object. Likewise, the collector can be fooled by writing a pointer to
disk and reading it back later.

With components in the file system, there are similar risks3. If the collector searches for
ASCII representations of the hash parts of component names, then anything that causes
those hash parts to be not represented as contiguous ASCII strings will break the detec-
tion. Obviously, flipping the bit representation of the ASCII string will accomplish that,
but this is unlikely to happen in real software. More likely is that the file name will be
split in some way. Path components are a common place to split path names: /nix/store/-
bwacc7a5c5n3...-hello-2.1.1 might be represented as a list ["nix", "store", "bwacc7a5c5n3...-
hello-2.1.1"]. This is why we scan for just the hash part, not the whole store path. Tools
are unlikely to split inside path components since substrings of path components have no
general semantic meaning.

More threatening is the use of another representation than ASCII. For instance, if paths
are represented in UTF-16 [34, Section 2.5], Nix’s scanner will not find them. Of course,

3In all fairness, the risks are potentially a bit bigger in the file system than in C. The C standard leaves the
semantics of the code example above implementation-defined. So most things that can cause pointer hiding
are not used by educated C programmers in general. On the plus side, the chance of a false positive is
practically non-existent.
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the scanner can easily be adapted to support such encodings. Another concern that is harder
to support is compressed executables. The best solution here is not to use such facilities if
they are available.

Ultimately, how well the scanning approach works is an empirical question. As we shall
see in Chapter 7, scanning works very well in practice, as evidenced by the large set of
components in the Nix Packages collection, which have not yielded a single example of
a hidden pointer. Admittedly, this result may be dependent on the characteristics of the
components being deployed; namely, they are Unix components, which do not typically
feature compressed executables, and store filenames almost invariably in plain ASCII.

3.5. Persistence

The technique of pointer scanning, as described in the previous section, solves the problem
of reliable identification of component dependencies. Here I describe a solution to the
problem of component interference, which occurs when two components occupy the same
addresses in the file system. When we deploy software by copying a file system closure to
another system, we run the risk of overwriting other software. The underlying problem is
similar to that in the notion of persistence in programming languages, which is essentially
the migration of data from one address space to another (such as a later invocation of a
process). We cannot simply dump the data of one address space and reload them at the
same addresses in the other address space, since those may already be occupied (or may
be invalid). This problem is solved by serialising the data, that is, by writing it to disk in a
format that abstracts over memory locations.

Unfortunately, it is hard to apply an analogue of serialisation to software deployment,
because it requires changing pointers, which may not be reliably possible in files4. For
instance, a tempting approach is to rename the files in a closure to addresses not existing
on the target system. To do this, we also have to change the corresponding pointers in the
files. However, patching files in such a manner might cause the affected components to
break, e.g., due to internal checksums on files being invalidated in the process.

Thus, we should choose addresses in such a way as to minimise the chance of address
collision. To make our scanning approach work, we already need long, recognisable ele-
ments in these file names, such as the base-32 representations of 160-bit values used in Nix.
Not every selection of values prevents collisions: e.g., using a combination of the name
and version number of a component is insufficient, since there frequently are incompatible
instances even for the same version of a component.

Another approach is to select random addresses whenever we build a component. This
works, but it is extremely inefficient; components that are functionally equal would obtain
different addresses on every build, and therefore might be stored many times on the same
system. That is, there is a complete lack of sharing: equal components are not stored at
the same address.

Hence, we observe a tension between the desire for sharing on the one hand, and the
avoidance of collisions on the other hand. The solution is another notion from memory
management. Maximal sharing [166] is the property of a storage system that two values

4But if we assume that we can rewrite pointers, then we can do something very similar to serialisation. The
implications of this assumption (which turns out to be quite reasonable) are explored in Chapter 6.
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occupy the same address in memory, if and only if they are equal (under some notion of
equality). This minimises memory usage in most cases.

The notion of maximal sharing is also applicable to deployment. We define two compo-
nents to be equal if and only if the inputs to their builds are equal. The inputs of a build
include any file system addresses passed to it, and aspects like the processor and operating
system on which it is performed. We can then use a cryptographic hash [145] of these
inputs as the recognisable part of the file name of a component. Cryptographic hashes
are used because they have good collision resistance, making the chance of a collision
negligible. In essence, hashes thus act as unique “product codes” for components. This
is somewhat similar to global unique identifiers in COM [16], except that these apply to
interfaces, not implementations, and are not computed deterministically. In summary, this
approach solves the problem of component interference at local sites and between sites
by imposing a single global address space on components. The implementation of this
approach is discussed in Chapter 5.
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This chapter describes the Nix expression language, the formalism used to describe compo-
nents and compositions. It first motivates why a lazy functional language is an appropriate
choice. It then gives a full description of the syntax and semantics of the language. Fi-
nally, it discusses some of the more interesting aspects of the implementation of the Nix
expression evaluator.

4.1. Motivation

The Nix expression language is a simple, untyped, purely functional language. It is not a
general purpose programming language. Its only purpose is to describe components and
compositions. A component is created through the derivation primitive operation, which
accepts all information necessary to build the component. This includes its dependencies,
which are other derivations or sources.

Purely functional language A purely functional language gives us a clean component
description formalism. The notion that components can be produced by functions that
accept values for the variation points in the component, is much more flexible than, say, a
language that binds such variation points using global variables.

Consider the ATerm library [166], which is a small library for term manipulation. It has
several build-time options, in particular an option that specifies whether the domain feature
“maximal sharing” is enabled. This setting is vitally important, as it completely changes
the semantics of the library. Thus a build with maximal sharing cannot be substituted by
a build without maximal sharing, and vice versa. Now suppose that we have a component
consisting of two programs, foo and bar, that require the ATerm library with and without
maximal sharing respectively. In a purely functional language, this is easy to model. We
just make a function for the ATerm library:

aterm = {maximalSharing}: derivation {...};

We can now call this function twice with different values, in the derivations of foo and bar
respectively:

foo = derivation { ...

buildInputs = [ (aterm {maximalSharing = true;}) ];

};

bar = derivation { ...

buildInputs = [ (aterm {maximalSharing = false;}) ];

};
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Imagine that we had a formalism that used global variables to bind variation points
such as maximalSharing. If the language were a Makefile-like declarative formalism, then
it would be quite hard to implement this example. Makefiles [56] are a formalism to
describe the construction of (small-grained) components. Variability in a component is
typically expressed by setting variables, e.g.,

MAX_SHARING = 1 # or 0

CFLAGS = -DMAX_SHARING=$(MAX_SHARING)

aterm: ...

foo: aterm

bar: aterm

It is not clear how to build foo and bar in both variants concurrently. In Make, it is typ-
ically very hard to build a component in multiple configurations that exist side-by-side.
If it is done at all, it is usually accomplished through ad hoc tricks such as calling Make
recursively with different flags, giving the build result a different name for each call.

If the formalism were imperative, then it would be possible. Such a style might look
like this:

maxSharing = true;

foo(aterm());

maxSharing = false;

bar(aterm());

But this has the same problems that imperative programming has in general. Since the
order in which statements are executed matters, it is hard to see exactly what goes into a
build function such as aterm(). Of course, in a trivial example like this, it is doable. But
once we get many functions, variables, and potential control-flow paths, it may become
very hard to comprehend what is happening. Note that this is the case even if variables are
not global. For instance, maxSharing could be a field of the aterm object. But even then
the execution order frustrates comprehension.

Interestingly, most true component-level formalisms do not specify compositions at all,
just components. (With “component-level” I mean that they work at the level of large-
grained components, like RPM spec files do, rather than at the level of small-grained com-
ponents, like Makefiles.) An RPM spec file for instance specifies a component build action,
which can include variables that can be set when the rpmbuild tool is called, but there is no
way for one RPM spec file to declare that it needs the result of another RPM spec file with
certain variables set to certain values. In any case RPM will not recursively build those
dependencies, let alone with the desired variable values (since it has no way to prevent
collisions between the various builds).

Other essentially functional build formalisms are Amake and Odin, discussed in Sec-
tion 10.3.

Laziness A lazy language only evaluates values when they are needed. This is a very
useful property for a component description language. Here are some concrete examples
of why this is useful.

It is possible to define large sets of components concurrently (i.e., in a single file or ex-
pression), without having to build them all. For instance, the Nix expression pkgs/system-
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/all-packages-generic.nix in the Nix Packages collection returns a large attribute set of
derivations:

rec {

stdenv = derivation { ... };

glibc = derivation { ... };

gcc = derivation { ... };

hello = derivation { ... };

subversion derivation { ... };

firefox = derivation { ... };

}

and hundreds more. Since the language is lazy, the right-hand sides of the attributes will
not be evaluated until they are actually needed, if at all. For instance, if we install any
specific component from this set, say, nix-env -i hello, then only the hello value will be
evaluated (although it may in turn require other values to be evaluated, such as stdenv).

Laziness also allows greater efficiency if only parts of a complex data structure are
needed. Take the operation nix-env -qa, which prints the name attribute of all top-level
derivations in a Nix expression:

$ nix-env -f ./pkgs/system/i686-linux.nix -qa

a52dec-0.7.4

acrobat-reader-7.0

alsa-lib-1.0.9

ant-blackdown-1.4.2

ant-j2sdk-1.4.2

ant-j2sdk-1.5.0

...

This operation is quite fast: it takes around 0.6 seconds on an Athlon XP 2600 on an
expression containing 417 top-level derivations. But the derivation calls for those 417
derivations potentially need to do a lot of work, as we will see in Section 5.4: they have to
copy sources to the Nix store, compute cryptographic hashes, and so on. But that work is
actually attached to two attributes returned from derivation, namely drvPath and outPath,
which compute the derivation and output store paths. As long as those attributes are not
used, they are not computed. Above, this was the case, since nix-env -qa only uses the
name attribute. But if we force the computation of either of those two attributes:

$ nix-env -f ./pkgs/system/i686-linux.nix -qa --drv-path

a52dec-0.7.4 /nix/store/spkk...-a52dec-0.7.4.drv

acrobat-reader-7.0 /nix/store/1fdl...-acrobat-reader-7.0.drv

alsa-lib-1.0.9 /nix/store/5a7h...-alsa-lib-1.0.9.drv

...

then the operation takes much longer: 2.7 seconds.
Laziness allows arguments to be passed to functions that may not be used. In the Subver-

sion example (Figure 2.9), the Subversion function passes dependencies such as openssl
and httpd that are only passed to the derivation if the corresponding domain feature is set,
e.g.,
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{ ..., sslSupport, openssl, ... }:

derivation {

openssl = if sslSupport then openssl else null;

}

That is, the derivation’s openssl attribute is set to null if SSL support is disabled, regardless
of the value of the openssl function parameter. This allows us to unconditionally pass an
instance of openssl in the function call in all-packages-generic.nix:

subversion = import .../subversion {

inherit openssl;

sslSupport = false; # set to `true' if you want SSL support

};

Thanks to laziness, OpenSSL will only be built if SSL support is enabled, despite the fact
that it is always passed as an argument. This simplifies the call sites. Without laziness, the
caller would have the responsibility to ensure that no unnecessary dependencies are passed
to the derivation, thus breaking abstraction.

4.2. Syntax

This section presents the syntax of the Nix expression language using the Syntax Definition
Formalism [175, 90], which has the following useful properties:

• It is scannerless: the lexical syntax and the high-level “context-free syntax” are
specified in the same formalism. Thus, no separate lexical scanner is necessary. The
result is a single context-free grammar.

• It supports generalised LR (GLR) parsing. Most context-free parsers (e.g., LL(k)
and LR(k) parsers, for fixed k) suffer from bounded look-ahead: they must choose
between different productions on the basis of a fixed number of tokens. This is
inconvenient for language implementors, since they must deal with the resulting
parse conflicts. For instance, the input fragment "{x" could be start of an attribute set
(e.g., {x=123;}), or a function definition (e.g., {x}: x)1. This requires the programmer
to introduce additional production rules to resolve the conflict. Since generalised LR
parsing has unbounded look-ahead, such grammar transformations are unnecessary.
Another advantage of GLR is that since it supports arbitrary context-free grammars
(including ambiguous ones), it allows grammars to be composed. This makes it easy
to extend programming languages [19].

• It is a declarative formalism that specifies a grammar separate from any particular
programming language (contrary to, say, Yacc [103]). This is the main reason why
I use SDF in this chapter: it allows the entire language to be described in a concise,
readable and directly usable formalism, with little meta-syntactic overhead.

1Actually, this is the only shift/reduce conflict in the language, so generalised LR parsing is not that important
here, except that it enables scannerless parsing.
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The current Nix implementation unfortunately does not use the SDF parser (sglr) for
performance reasons (scannerless parsing in particular is expensive). Rather, it uses Bi-
son [66], which is the GNU implementation of Yacc [103]. It recently added support for
GLR parsing, but still requires a separate lexical scanner. The Flex lexical scanner gener-
ator [130], an implementation of Lex [113], is used for lexical analysis.

The following is a brief overview of SDF necessary to understand the Nix grammar. A
full specification of SDF can be found in [175]. An SDF grammar contains production
rules of the form

symbols → nt

where symbols is a sequence of terminals and non-terminals, and nt is the non-terminal pro-
duced by the production rule. This notation is somewhat untraditional: most context-free
grammar formalisms are written the other way around (nt ← symbols or nt → symbols).
The left-hand side can contain various types of syntactic sugar:

• Regular expressions to denote lexical elements.

• The usual EBNF constructs: repetition (S*), choice (S?), and grouping ((S)).

SDF has two kinds of productions: those defining the lexical syntax, and those defining
the context-free syntax. Lexical syntax is used to define the tokens of the language. An
example of the first is the definition of the non-terminal for identifiers:

lexical syntax

[a-zA-Z\_][a-zA-Z0-9\_\']* -> Id

This defines identifiers using a regular expression: they start with a letter or underscore,
and are followed by zero or more letters, digits, underscores, and accents.

Layout—whitespace and comments that can occur anywhere between tokens—is also
defined using lexical syntax productions. For example, the production

[\ \t\n] -> LAYOUT

says that spaces, tabs and newlines are all layout. There is a built-in production that says
that sequences of layout are also layout. The non-terminal LAYOUT has a special status,
as it is automatically inserted between all symbols in the productions of the context-free
syntax.

For example, the following context-free syntax2 rule defines a production for a simple
expression language:

context-free syntax

Expr "+" Expr -> Expr

This rule is (essentially) desugared to

LAYOUT? Expr LAYOUT? "+" LAYOUT? Expr LAYOUT? -> Expr

2The term “context-free syntax” in SDF is a bit confusing, as both its “lexical syntax” and “context-free syntax”
are combined to a single context-free grammar.
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SDF allows priorities and associativities to be defined to disambiguate otherwise am-
biguous grammars. The following example defines left-associative productions for addi-
tion and multiplication in a simple expression language, and then defines that multiplica-
tion takes precedence over addition:

context-free syntax

Expr "+" Expr -> Expr {left}

Expr "*" Expr -> Expr {left}

context-free priorities

Expr "*" Expr -> Expr

> Expr "+" Expr -> Expr

Finally, there are typically all sorts of ambiguities between the lexical elements of a lan-
guage. For instance, the string if can be parsed as the identifier "if", a sequence of identifiers
i and f, and the keyword if (assuming that the language has a production containing such a
keyword). The SDF features of rejects and follow restrictions enforce the correct parsing.
This declaration says that if should not be parsed as an identifier:

lexical syntax

"if" -> Id {reject}

Technically, this defines a production that whenever it matches at some point with the
input, it causes any other Id production for those same characters to be rejected. To prevent
a sequence of identifier characters from being interpreted as a sequence of identifiers, a
follow restriction can be used:

lexical restrictions

Id -/- [a-zA-Z0-9\_\']

This says that an Id cannot be followed by a character matching the given character class.
Thus, xy cannot be parsed as the identifiers x and y, since x is followed by a letter.

4.2.1. Lexical syntax

We start with the lexical syntax of Nix expressions. It is divided into two parts: the defini-
tion of the layout, and of the actual information-carrying tokens of the language.

Figure 4.1 shows the SDF module that defines the layout of the language. (SDF gram-
mars are modular in order to allow the different aspects of a language to be defined sepa-
rately, and to make it easier to combine grammars.) Layout consists of whitespace (spaces,
tabs and newlines) and comments. It is worth noting that the language supports two styles
of comments:

(x: x) # Single-line comments like this

"foo" + /* Multi-line

comments like this */ "bar"

Figure 4.2 defines the remainder of the lexical syntax of the language. The token types
defined here are identifiers (which are exactly as described in the Id example above), and
various kinds of constants defined using regular expressions. These are:

• Natural numbers (Int).
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module Nix-Layout

exports

sorts HashComment Asterisk Comment

lexical syntax

[\ \t\n] -> LAYOUT

HashComment -> LAYOUT

Comment -> LAYOUT

"#" ~[\n]* -> HashComment

"/*" ( ~[\*] | Asterisk )* "*/" -> Comment

[\*] -> Asterisk

lexical restrictions

Asterisk -/- [\/]

HashComment -/- ~[\n]

context-free restrictions

LAYOUT? -/- [\ \t\n]

Figure 4.1.: Layout in Nix expressions

• Strings (Str) enclosed between double quotes. Characters are escaped by prefixing
them with a backslash.

• Paths (Path) are essentially sequences of characters with at least one forward slash in
them. To be precise, they are sequences of path components separated by slashes. A
path component consists of one or more letters, digits, and some other characters3.
The initial path component, i.e., the one before the first slash, may be omitted. If it
is omitted, we have an absolute path, e.g., /home/alice/.profile. If it is present, we
have a relative path, e.g., ../../foo/builder.sh.

• URIs (Uri) are a convenience for the specification of URIs in, e.g., calls to the func-
tion fetchurl. The advantage of having URIs as a language construct over simply us-
ing strings is that the user gets syntax checking, and can omit the enclosing quotes.
The regular expression for URIs used here follows [12, Appendix A].

The remainder of Figure 4.2 is concerned with rejects and follow restrictions. Note
that the keywords of the language (used in the context-free syntax below) must be given
twice, first to reject them as identifiers, and second to prevent them from being followed
by identifier characters (e.g., ifx should not be parsed as the keyword if followed by the
variable x). That we have to specify keywords twice is a current infelicity of SDF.

Also note that Booleans (true and false) are not specially defined here. Rather, true and
false are parsed as identifiers and interpreted as built-in nullary functions during execution,
as discussed in the semantics below.

4.2.2. Context-free syntax

Figure 4.3 shows the context-free syntax of the language. A parse of a Nix expression
must match an Expr non-terminal 34 . Almost all productions here produce Exprs. In that

3So currently there is no way to define paths that contain characters not in this set.
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module Nix-Lexicals

exports

sorts Id Int Str Path Uri

lexical syntax

[a-zA-Z\_][a-zA-Z0-9\_\']* -> Id

"rec" | "let" | "if" | "then" | "else" |

"assert" | "with" | "inherit" -> Id {reject}

[0-9]+ -> Int

"\"" ~[\n\"]* "\"" -> Str

[a-zA-Z0-9\.\_\-\+]* ("/"[a-zA-Z0-9\.\_\-\+]+)+ -> Path

[a-zA-Z] [a-zA-Z0-9\+\-\.]* ":"

[a-zA-Z0-9\%\/\?\:\@\&\=\+\$\,\-\_\.\!\~\*\']*

-> Uri

lexical restrictions

Id -/- [a-zA-Z0-9\_\']

Int -/- [0-9]

Path -/- [a-zA-Z0-9\.\_\-\+\/]

Uri -/- [a-zA-Z0-9\%\/\?\:\@\&\=\+\$\,\-\_\.\!\~\*\']

"rec" "let" "if" "then" "else"

"assert" "with" "inherit" -/- [A-Za-z0-9\_\']

Figure 4.2.: Lexical syntax of Nix expressions

respect the Nix expression grammar is quite flat: for instance, there is no separate gram-
matical level for concepts such as modules, function definitions, and so on. Everything is
an expression.

The first production just injects the non-terminals for constants into Expr 35 . Of course,
expressions can be enclosed in parentheses to override the normal precedence rules 36 .

The language has two types of functions. The first 37 takes a single argument. For
instance, the (anonymous) identity function can be defined as follows:

x: x

Of course, this style of function is just a plain λ -abstraction from the λ -calculus [10], as we
will see in the discussion of the semantics below. Though this style only allows functions
with a single argument, since this is a functional language we can still define (in a sense)
functions with multiple arguments, e.g.,

x: y: x + y

which is a function taking an argument x that returns another function that accepts an
argument y.

The second style of function definition 38 , which we have seen in Section 2.2, is more
important in this language. It takes an attribute set and binds the attributes defined therein
to local variables. Thus,
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4.2. Syntax

module Nix-Exprs

imports Nix-Lexicals

exports

sorts Expr Formal Bind ExprList

context-free start-symbols Expr 34
context-free syntax

Id | Int | Str | Uri | Path -> Expr 35

"(" Expr ")" -> Expr 36

Id ":" Expr -> Expr 37

"{" {Formal ","}* "}" ":" Expr -> Expr 38
Id -> Formal

Id "?" Expr -> Formal

Expr Expr -> Expr 39

"assert" Expr ";" Expr -> Expr

"with" Expr ";" Expr -> Expr 40

"{" Bind* "}" -> Expr 41
"rec" "{" Bind* "}" -> Expr

"let" "{" Bind* "}" -> Expr

Expr "." Id -> Expr

Id "=" Expr ";" -> Bind 42
"inherit" ("(" Expr ")")? Id* ";" -> Bind

"[" ExprList "]" -> Expr 43
"" -> ExprList

Expr ExprList -> ExprList

"if" Expr "then" Expr "else" Expr -> Expr 44

Figure 4.3.: Context-free syntax of Nix expressions
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{x, y}: x + y

declares a function that accepts an attribute set with attributes x and y (and nothing else),
and the expression

({x, y}: x + y) {y = "bar"; x = "foo";}

yields "foobar". The formal (expected) argument can have a default value, allowing it to be
omitted. So

({x, y ? "bar"}: x + y) {x = "foo";}

also evaluates to "foobar".
Following the tradition of most functional languages, function calls are written by juxta-

position, i.e., f x instead of, say, f(x). Whether the absence of an argument delimeter makes
function calls more or less readable is a matter of controversy. However, most calls in Nix
expressions pass argument sets, which are enclosed in curly braces and therefore delimited
anyway (i.e., f {attrs}).

Assertions have been discussed in Section 2.2 (page 33). With expressions 40 allow all
attributes in an attribute set to be added to the lexical scope. For example,

with {y = "bar"; x = "foo";}; x + y

evaluates to "foobar"; the variables x and y defined in the attribute set are in scope in the
expression x + y. This construct is primarily useful in conjunction with import, allowing
values to be “included” from an attribute set defined in a file:

with (import ./definitions.nix); x + y

In essence, this enables a “conventional” module system: commonly used definitions can
be placed in a separate file, and imported into the lexical scope of an expression in another
file. But note that contrary to most module systems, with and import enable a “policy-free”
module system: for instance, imports can occur in any expression, not just at top level.

The various types of attribute set definitions 41 —plain, recursive, and lets—are dis-
cussed in more detail below. All three contain lists of attributes enclosed in curly braces.
There are two kinds of attribute definitions 42 : plain name/value pairs, and inherits, which
copy the value of an attribute from the surrounding lexical scope or an optional expression.

Lists 43 are enclosed in square brackets, and the list elements are juxtaposed, not sepa-
rated by an explicit delimiter. For instance,

[1 2 3]

is a list of three elements. More importantly,

[a b c]

is also a list of three elements, not a call to function a with arguments b and c4.
Finally, the language has conditionals 44 . There is only an if...then...else construct and

no if...then, since the latter does not make sense in a functional setting as it leaves the
value of the expression undefined in case of a false condition. Assertions already serve this
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Expr "==" Expr -> Expr {non-assoc}

Expr "!=" Expr -> Expr {non-assoc}

"!" Expr -> Expr

Expr "&&" Expr -> Expr {right}

Expr "||" Expr -> Expr {right}

Expr "->" Expr -> Expr {right}

Expr "//" Expr -> Expr {right}

Expr "~" Expr -> Expr {non-assoc}

Expr "?" Id -> Expr

Expr "+" Expr -> Expr {left}

Figure 4.4.: Context-free syntax of Nix expressions: Operators

purpose—they abort evaluation if the condition is false. Note that due to the absence of an
if...then, there is no “dangling else” problem.

Figure 4.4 continues the context-free syntax. It defines operators, along with their asso-
ciativities. The meaning of the operators is given below.

Figure 4.5 defines the relative precedences of all language constructs. Functions bind the
weakest, and thus the body of a function extends maximally to the right unless the function
is enclosed in parentheses. Assertions, with-expressions and conditions are the next level,
followed by the operators. Function application binds very strongly. These priorities cause
the following example expression:

{x}: assert true; f x != !g y

to be parsed as:

({x}: (assert (true); ((f x) != (!(g y)))))

4.3. Semantics

This section gives the formal semantics of the Nix expression language.

4.3.1. Basic values

The basic (data) values of the Nix expression language, in addition to natural numbers,
strings, paths, and URIs described above, are the following:

• Null values, denoted as the built-in nullary function null.

• Booleans, denoted as the built-in nullary functions true and false.

4The reason that there is a ExprList non-terminal is actually for this very reason: we cannot write Expr* in the
production rule for lists, since then we are not able to give it a priority relative to function calls.
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context-free priorities

Expr "." Id -> Expr

> Expr ExprList -> ExprList

> Expr Expr -> Expr

> Expr "~" Expr -> Expr

> Expr "?" Id -> Expr

> Expr "+" Expr -> Expr

> "!" Expr -> Expr

> Expr "//" Expr -> Expr

> Expr "==" Expr -> Expr

> Expr "!=" Expr -> Expr

> Expr "&&" Expr -> Expr

> Expr "||" Expr -> Expr

> Expr "->" Expr -> Expr

> "if" Expr "then" Expr "else" Expr -> Expr

> "assert" Expr ";" Expr -> Expr

> "with" Expr ";" Expr -> Expr

> Id ":" Expr -> Expr

> "{" {Formal ","}* "}" ":" Expr -> Expr

Figure 4.5.: Context-free syntax of Nix expressions: Priorities

• Subpaths are a somewhat obscure language feature that allows files in derivations to
be referenced from other derivations. This is useful if a derivation (as is typical) pro-
duces a directory tree, and we are interested in a particular file in that tree. Suppose
that we have a variable perl that refers to a derivation that builds Perl. The output
of this derivation is a directory at some path p. Suppose now that we want to use
the Perl interpreter as the builder of some other derivation. However, the interpreter
is a program stored not at p but at p + "/bin/perl". With subpaths, we can write the
following:

derivation { ...

builder = perl ~ /bin/perl;

}

The operator ~ is the constructor of subpath values. We need subpaths in order to
maintain the proper dependency relation between derivations. The above might have
been written as:

derivation { ...

builder = perl.outPath + "/bin/perl";

}

That is, we compute the path of the builder through ordinary string concatenation
(the outPath attribute contains the computed store path of the perl derivation). As
we shall see in Section 5.4, this derivation will not properly identify perl as one of
its dependencies. It will just have an opaque string value for its builder attribute5.

5Currently, direct references to outPath are not disallowed, so this unsafe example is actually possible. It can be
disallowed by restricting access to the outPath and drvPath attributes described in Section 5.4.
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All path values are internally in canonical form, meaning that they are not relative to
the current directory (i.e., start with /), do not contain . or .. elements, do not contain
redundant separators (e.g., //), and do not end in a separator. Any relative paths in a Nix
expression are absolutised relative to the directory that contained the expression. For in-
stance, if the expression /foo/bar/expr.nix contains a path ../bla/builder.sh, it is absolutised
to /foo/bla/builder.sh. Sometimes Nix expressions are not specified in a file but given on
the command line or passed through standard input, e.g., in nix-env and nix-instantiate.
Such paths are absolutised relative to the current directory. In the semantic rules below we
will make use of a function canonicalise(p,d) (whose definition is omitted on grounds of
dullness) that yields a canonical representation of path p, absolutised relative to directory
d if necessary.

4.3.2. Compound values

The language has two ways to form compound data structures: lists and attribute sets.

Lists Lists are enclosed in square brackets, as described above. List elements are lazy, so
they are only evaluated when needed. Currently, the language has very limited facilities for
list manipulation. There is a built-in function map that applies a function to all elements in
a list. Lists can be included in derivations, as we will see in Section 5.4. Other than that,
there are no operations on lists.

Attribute sets The most important data type in the language is the attribute set, which is
a set of name/value pairs, e.g.,

{ x = "foo"; y = 123; }

Attribute names are identifiers, and attribute values are arbitrary expressions. The order of
attributes is irrelevant, but any atttribute name can occur only once in a set. Attributes can
be selected using the . operator:

{ x = "foo"; y = 123; }.y

This expression evaluates to 123.
Recursive attribute sets allow attribute values to refer to each other. They are constructed

using the rec keyword. Formally, each attribute in the set is added to the scope of the entire
attribute set. Hence,

rec { x = y; y = 123; }.x

evaluates to 123. If rec were omitted, the identifier y in the definition of the attribute x
would refer to some y bound in the surrounding scope. Recursive attribute sets introduce
the possibility of recursion, including non-termination:

rec { x = x; }.x

A let-expression, constructed using the let keyword, is syntactic sugar for a recursive
attribute set that automatically selects the special attribute body from the set. Thus,
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let { body = a ++ b; a = "foo"; b = "bar"; }

evaluates to "foobar".
As we saw above, when defining an attribute set, attributes values can be inherited from

the surrounding lexical scope or from other attribute sets. The expression

x: { inherit x; y = 123; }

defines a function that returns an attribute set with two attributes: x which is inherited from
the function argument named x, and y which is declared normally. The inherit construct is
just syntactic sugar. The example above could also be written as

x: { x = x; y = 123; }

Note that the right-hand side of the attribute x = x refers to the function argument x, not to
the attribute x. Thus, x = x is not a recursive definition.

Likewise, attributes can be inherited from other attribute sets:

rec {

as1 = {x = 1; y = 2; z = 3;};

as2 = {inherit (as1) x y; z = 4;};

}

Here the set as2 copies attributes x and y from set as1. It desugars to

rec {

as1 = {x = 1; y = 2; z = 3;};

as2 = {x = as1.x; y = as1.y; z = 4;};

}

However, the situation is a bit more complicated for rec attribute sets, whose attributes
are mutually recursive, i.e., are in each other’s scope. The intended semantics of inherit is
still the same: values are inherited from the surrounding scope. But simply desugaring is
no longer enough. So if we desugar

x: rec { inherit x; y = 123; }

to

x: rec { x = x; y = 123; }

we have incorrectly created an infinite recursion: the attribute x now evaluates to itself,
rather than the value of the function argument x. For this reason rec is actually internally
stored as two sets of attributes: the recursive attributes, and the non-recursive attributes.
The latter are simply the inherited attributes. We denote this internally used representation
of rec sets as rec {as1/as2}, where as1 and as2 are the recursive and non-recursive attributes,
respectively.
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subst(subs,x) =

{
e if (x e) ∈ subs
x otherwise

subst(subs,{as}) = {map(λ 〈n = e〉.〈n = subst(subs,e)〉,as)}

subst(subs, rec {as1/as2}) = rec {map(λ 〈n = e〉.〈n = subst(subs′,e)〉,as1)
/ map(λ 〈n = e〉.〈n = subst(subs,e)〉,as2)}

where subs′ = {x e|x e ∈ subs∧ x 6∈ names(as)}

subst(subs, let {as1/as2}) = analogous to the rec case

subst(subs,x: e) = x: subst(subs′,e)
where subs′ = {x2 e|x2 e ∈ subs∧ x 6= x2}

subst(subs, {fs}: e) = {fs}: subst(subs′,e)
where subs′ = {x e|x e ∈ subs∧ x 6∈ argNames(fs)}

Figure 4.6.: subst: Substitutions

4.3.3. Substitutions

Variable substitution is an important operation in the evaluation process6. The substitution
function subst(subs,e) performs a set of substitutions subs in the expression e. The set
subs consists of substitutions of the form x e that replace a variable x with an expression
e.

Here and in the semantic rules below, the variable e ranges over expressions, x over vari-
ables, p over paths, s over strings, and n over attribute names, with subscripts as appropri-
ate. The members of attribute sets are denoted collectively as as, and we write 〈n = e〉 ∈ as
to denote that the attribute set as has an attribute named n with value e. The arguments of
a multi-argument function are denoted as fs (for “formals”).

The auxiliary function names(as) yields the set of attribute names occurring in the left
hand side of a set of attributes as. Likewise, argNames(fs) yields the set of names of
formal arguments from a set of formal arguments (note that formal arguments can also
contain defaults, which are left out by this function).

The function subst replaces all free variables for which there is a substitution. A variable
is free in a subexpression if it is not bound by any of its enclosing expressions. Variables
are bound in functions and in recursive attribute sets. In recursive attribute sets, only the
recursive attributes (as1) bind variables; the non-recursive attributes (as2) do not. The
function subst is shown in Figure 4.6. For all cases not specifically mentioned here, the
substitution is recursively applied to all subexpressions. For instance, for function calls the
following substitution is applied:

subst(subs,e1 e2) = subst(subs,e1) subst(subs,e1)

6The term substitution in this section has no relation to Nix’s substitute mechanism.
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It is assumed that the substitution terms (i.e., the expressions in subs) contain no free
variables, so subst does not have to perform renaming to prevent name capture; the style
of evaluation used below allows us to get away with this.

4.3.4. Evaluation rules

The operational semantics of the language is specified using semantic rules of the form
e1 7→ e2 that transform expression e1 into e2. Rules may only be applied to closed terms,
i.e., terms that have no free variables. Thus it is not allowed to arbitrary apply rules to
subterms.

An expression e is in normal form if no rules are applicable. Not all normal forms are
acceptable evaluation results. For example, no rule applies to the following expressions:

x

123 x

assert false; 123

{x = 123;}.y

({x}: x) {y = 123;}

The predicate good(e) defines whether an expression is a valid evaluation result. It is true
if e is a basic or compound value or a function (lambda), and false otherwise. Since rules
are only allowed to be applied to an expression at top level (i.e., not to subexpressions),
a good normal form is in weak head normal form (WHNF) [133, Section 11.3.1]. Weak
head normal form differs from the notion of head normal form in that right-hand sides of
functions need not be normalised. A nice property of this style of evaluation is that there
can be no name capture [10], which simplifies the evaluation machinery.

An expression e1 is said to evaluate to e2, notation e1
∗7→ e2, if there exists a sequence

of zero or more applications of semantic rules to e1 that transform it into e2 such that
good(e2) is true; i.e., the normal form must be good. In the implementation, if the normal
form of e1 is not good, its evaluation triggers a runtime error (e.g., “undefined variable” or
“assertion failed”).

Not all expressions have a normal form. For instance, the expression

(rec {x = x;}).x

does not terminate. But if evaluation does terminate, there must be a single normal form.
That is, evaluation is confluent [5]. The confluence property follows from the fact that at
most one rule applies to any expression. The implementation detects some types of infinite
recursion, as discussed below.

The semantic rules are stated below in the following general form:

RULE-NAME :
condition

e 7→ e′

That is, we can conclude that e evaluates to e′ (e 7→ e′), if the proposition condition holds.
If there are no conditions, the rule is simply written as RULE-NAME : e 7→ e′.
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Attribute sets The SELECT rule implements attribute selection. This rule governs suc-
cessful selection, i.e., it applies only if the given attribute name exists in the attribute set.

SELECT :
e ∗7→ {as}∧〈n = e′〉 ∈ as

e.n 7→ e′

Note that there is no rule for failure. If attribute n is not in as, evaluation fails and a nice
error message is printed in the actual implementation.

A recursive attribute set is desugared to a normal attribute set by replacing all occur-
rences of references to the attributes with the recursive attribute set. For instance, if e =
rec {x = f x y; y = x;}, then e is desugared to

{ x = f (e.x) (e.y);

y = e.x;

}

or in full,

{ x = f ((rec {x = f x y; y = x;}).x)

((rec {x = f x y; y = x;}).y);

y = (rec {x = f x y; y = x;}).x;

}

This desugaring is implemented by the REC rule:

REC : rec {as1/as2} 7→ {subst(subs,{as1})∪as2}

where

subs = {n (rec {as1/as2}).n | n ∈ names(as1∪as2)}

Contrary to what the reader might expect, this substitution does not lead to a potential ex-
plosion in the size of expressions in our implementation, since we use ATerms that employ
maximal sharing to store equal subterms exactly once, as discussed in Section 4.4.

A let-expression is just syntactic sugar that automatically selects the attribute body from
a recursive set of attributes:

LET : let {as1/as2} 7→ (rec {as1/as2}).body

Function calls Function calls to single-argument functions (i.e., lambdas) are just plain
β -reduction in the λ -calculus [10].

β -REDUCE :
e1
∗7→ x: e3

e1 e2 7→ subst({x e2},e3)

As we shall see in Theorem 2 (page 85), the expression e2 contains no free variables.
Therefore, there is no danger of name capture in subst.

Multi-argument function calls, i.e., functions that accept and open an attribute set, are a
bit more complicated:

β -REDUCE’ :
e1
∗7→ {fs}: e3 ∧ e2

∗7→ {as} ∧ match
e1 e2 7→ subst(subs,e3)
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where

match = (∀n ∈ names(as) : n ∈ argNames(fs)) ∧ (∀n ∈ fs : n ∈ names(as))
subs = {n arg(n) | n ∈ argNames(fs)}

arg(n) =

{
e if 〈n = e〉 ∈ as
e if n 6∈ names(as) ∧ n ? e ∈ fs

Note that a multi-argument function call is strict in its argument—the attribute set—but
not in the values of the attributes. The Boolean value match ascertains whether each actual
argument matches a formal argument, and whether each formal argument without a default
matches an actual argument (note that ∀n ∈ fs does not apply to the formal arguments with
defaults, which would be ∀n ? e ∈ fs). The function arg(n) determines the actual value to
use for formal argument n, taking it from as if it has an attribute n, and using the default in
fs otherwise.

Conditionals Conditional expressions first evaluate the condition expression. It must
evaluate to a Boolean. (Evaluation fails if it is not.) The conditional then evaluates to one
of its alternatives.

IFTHEN :
e1
∗7→ true

if e1 then e2 else e3 7→ e2
IFELSE :

e1
∗7→ false

if e1 then e2 else e3 7→ e3

Assertions An assertion assert e1; e2 evaluates to e2 if e1 evaluates to true. Otherwise,
evaluation fails.

ASSERT :
e1
∗7→ true

assert e1; e2 7→ e2

Withs With-expressions with e1; e2 substitute the attributes defined in the attribute set e1
into the resulting expression e2.

WITH :
e1
∗7→ {as}

with e1; e2 7→ subst({n e | 〈n = e〉 ∈ as},e2)

Operators The equality operators are defined as follows.

OPEQ : e1
∗7→ e′1∧ e2

∗7→ e′2∧ e′1 = e′2
e1 == e2 7→ true

e1
∗7→ e′1∧ e2

∗7→ e′2∧ e′1 6= e′2
e1 == e2 7→ false

Equality between expressions (e′1 = e′2) is syntactic. Of course, inequality (e1 != e2) is
defined as the negation of equality.
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The Boolean operators are straightforward, although it is worth noting that conjunction
and disjunction (“and” and “or”) are lazy, i.e., “short-circuited”.

OPNEG : e ∗7→ false
!e 7→ true

e ∗7→ true
!e 7→ false

OPAND : e1
∗7→ false

e1 && e2 7→ false
e1
∗7→ true∧ e2

∗7→ false
e1 && e2 7→ false

e1
∗7→ true∧ e2

∗7→ true
e1 && e2 7→ true

OPOR : e1
∗7→ true

e1 || e2 7→ true
e1
∗7→ false∧ e2

∗7→ true
e1 || e2 7→ true

e1
∗7→ false∧ e2

∗7→ false
e1 || e2 7→ false

OPIMPL : e1
∗7→ false

e1→ e2 7→ true
e1
∗7→ true∧ e2

∗7→ true
e1→ e2 7→ true

e1
∗7→ true∧ e2

∗7→ false
e1→ e2 7→ false

The update operator e1 // e2 yields the right-biased union of the attribute sets e1 and e2,
that is, the set consisting of the attributes in e1 and e2, with attributes in e2 overriding those
in e1 if there are name conflicts.

OPUPDATE :
e1
∗7→ {as1}∧ e2

∗7→ {as2}
e1 // e2 7→ {rightUnion(as1,as2)}

where

rightUnion(as1,as2) = as2∪{〈n = e〉 | 〈n = e〉 ∈ as1∧n 6∈ names(as2)}

Addition is defined between strings and between paths.

OPPLUSSTR :
e1
∗7→ s1∧ e2

∗7→ s2

e1 + e2 7→ s1 +s s2

OPPLUSPATH :
e1
∗7→ p1∧ e2

∗7→ p2

e1 + e2 7→ canonicalise(p1 +s "/"+s p2)

where +s denotes string concatenation.
Finally, there is an operator ? to check attribute set membership. This is used to guard

the use of attributes that may not be defined, e.g.,

builder = if args ? builder then args.builder else bash;

It is implemented as follows.

OPHASATTR+ :
e ∗7→ {as}∧n ∈ names(as)

e ? n 7→ true

OPHASATTR- :
e ∗7→ {as}∧n 6∈ names(as)

e ? n 7→ false
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Primops Primitive operations, or primops, are functions that are built into the language.
They need not be defined or imported; they are in scope by default. But since they are
normal identifiers, they can be overridden by local definitions.

The most important primop, indeed the raison d’être for the Nix expression language,
is the primop derivation. It translates a set of attributes describing a build action to a store
derivation, which can then be built. The translation process is performed by the function
instantiate, given in Section 5.4. What is relevant here is that instantiate(as) takes a set of
attributes as, translates them to a store derivation, and returns an identical set of attributes,
but with three attributes added: the attribute type with string value "derivation", and the
attributes drvPath and outPath containing the store paths of the store derivation and its
output, respectively.

So intuitively, derivation just calls instantiate:

DERIVATION :
e ∗7→ {as}

derivation e 7→ {instantiate(as)}

However, as I argued at the beginning of this chapter (page 63), we want derivations to be
very lazy: the expensive call to instantiate should only be made if we actually need drvPath
and outPath. For this reason, derivation postpones the computation of those attributes by
using an indirection:

DERIVATION :
e ∗7→ {as}

derivation e 7→ {rightUnion(as,as′)}

where

as′ = {〈type = "derivation"〉,〈drvPath = e′.drvPath〉,〈outPath = e′.outPath〉}
e′ = derivation! {as}

The internal (not user-accessible) primop derivation! performs the actual instantiation:

DERIVATION! : derivation! {as} 7→ {instantiate(as)}

Thus, when we evaluate attributes that result from a call to derivation, there is essentially
no runtime cost unless we evaluate the drvPath or outPath attributes.

The next primop is import. The unary operation import p reads the file p, parses it as a
Nix expression, applies certain checks, and evaluates and returns the expression. The valid-
ity checks are that the expression must be closed (i.e., not contain any unbound variables),
that no attribute set definition defines two attributes with the same name, and similarly
that no multi-argument function definition has two formal arguments with the same name.
The requirement that imported expressions are closed is rather important: it implies that
no imported expression can refer to the local scope of the caller. Also, any relative path
constants occurring in the expression are absolutised.

IMPORT :
e ∗7→ p

import e 7→ loadExpr(p)
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If p denotes a directory, the path "/default.nix" is automatically appended. This is an
organisational convenience for people who want to store each component’s Nix expression
and builder in a separate directory (as in, e.g., Figure 2.5).

The function loadExpr takes care of loading, parsing and processing the file. The astute
reader will note that loadExpr depends on the contents of the file system, that is, it depends
on some mapping of paths to file system contents. This mapping is left implicit in the
evaluation rules. It may also appear to make the evaluation calculus impure, implying
that equational reasoning (an important property of purely functional languages) no longer
holds. For instance, it might appear that import p == import p does not always evaluate to
true. However, as we will see below, due to maximal laziness this is not in fact the case.
The call import p is only evaluated once for a given p.

The import primitive is overloaded to also work on derivations:

IMPORT’ :

e ∗7→ {as}∧〈"type" = et〉 ∈ as∧ et
∗7→ "derivation"

∧〈"drvPath" = ep〉 ∈ as∧ ep
∗7→ p

import e 7→ loadExpr(build(p))

The function build builds a store derivation. It is defined in Section 5.5 and returns the
output path of the derivation. Overloading import to work on derivations allows Nix ex-
pressions to generate and use other Nix expressions. We will use this feature in Chapter 10
to implement build management with Nix, as it allows the automatic generation of lists of
inputs from other inputs (e.g., the list of header files imported by a C source file).

Finally, the nullary primops true, false, and null are constant symbols: they represent
themselves, and have no evaluation rules. There is also an ever-growing set of utility
functions (added in an admittedly ad hoc fashion) such as map, baseNameOf, and so on;
but the semantics of those is not very relevant to a discussion of the foundations of the Nix
expression language.

4.4. Implementation

Maximal laziness Nix expression evaluation is implemented using the ATerm library
[166], which is a library for the efficient storage and runtime manipulation of terms. The
Nix expression parser yields an ATerm encoding of the term. For example, the expression

(x: x) 123

yields the ATerm

Call(Function1("x",Var("x"),Pos("(string)",1,3)),Int(123))

The Pos node indicates position information, which is stored for certain language con-
structs (notably functions and attributes) to provide better error messages.

A very nice property of the ATerm library is its maximal sharing: if two terms are
syntactically equal, then they occupy the same location in memory. This means that a
shallow pointer equality test is sufficient to perform a deep syntactic equality test. Maximal
sharing is implemented through a hash table. Whenever a new term is created, the term is
looked up in the hash table. If the term already exists, the address of the term obtained from
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eval(e) :
if cache[e] 6= ε :

if cache[e] = blackhole :
Abort; infinite recursion detected.

return cache[e]
else :

cache[e]← blackhole
e′← eval′(e)
cache[e]← e′

return e′

Figure 4.7.: Evaluation caching

the hash table is returned. Otherwise, the term is allocated, initialised, and added to the
hash table. A garbage collector takes care of freeing terms that are no longer referenced.

Maximal sharing is extremely useful in the implementation of a Nix expression inter-
preter since it allows easy caching of evaluation results, which speeds up expression eval-
uation by removing unnecessary evaluation of identical terms. The interpreter maintains a
hash lookup table cache : ATerm→ ATerm that maps ATerms representing Nix expressions
to their normal form. Figure 4.7 shows pseudo-code for the caching evaluation function
eval, which “wraps” the evaluation rules defined in Section 4.3.4 in a caching layer. The
function eval′ simply implements those evaluation rules. It is assumed that eval′ calls back
into eval to evaluate subterms (i.e., every time a rule uses the relation ∗7→ in a condition),
and that it aborts with an appropriate error message if e does not evaluate to a good normal
form. Thus we obtain the desired caching. The special value ε denotes that no mapping
exists in the cache for the expression7. Note that thanks to maximal sharing, the lookup
cache[e] is very cheap: it is a lookup of a pointer in a hash table.

The function eval also perform a trick known as blackholing [134, 110] that allows
detection of certain simple kinds of infinite recursion. When we evaluate an expression e,
we store in the cache a preliminary “fake” normal form blackhole. If, during the evaluation
of e, we need to evaluate e again, the cache will contain blackhole as the normal form for
e. Due to the determinism and purity of the language, this necessarily indicates an infinite
loop, since if we start evaluating e again, we will eventually encounter it another time, and
so on.

Note that blackholing as implemented here differs from conventional blackholing, which
overwrites a value being evaluated with a black hole. This allows discovery of self-
referential values, e.g., x = ... x ...;. But it does not detect infinite recursions like this:

(rec {f = x: f x;}).f 10

since every recursive call to f creates a new value of x, and so blackholing will not catch
the infinite recursion. In contrast, our blackholing does detect it, since it is keyed on
maximally shared ATerms that represent syntactically equal expressions. The example

7In the ATerm library, this means that the table lookup returned a null pointer.
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above is evaluated as follows:

(rec {f = x: f x;}).f 10
(REC) 7→ {f = x: (rec {f = x: f x;}).f x;}.f 10

(SELECT) 7→ (x: (rec {f = x: f x;}).f x) 10
(β -REDUCE) 7→ (rec {f = x: f x;}).f 10

This final expression is equal to the first (which is blackholed at this time), and so an
infinite recursion is signalled.

The current evaluation cache never forgets the evaluation result of any term. This obvi-
ously does not scale very well, so one might want to clear or prune the cache eventually,
possibly using a least-recently used (LRU) eviction scheme. However, the size of current
Nix expressions (such as those produced during the evaluation of Nixpkgs) has not com-
pelled me to implement cache pruning yet. It should also be noted that due to maximal
sharing, cached values are stored quite efficiently.

The expression caching scheme described here makes the Nix expression evaluator max-
imally lazy. Languages such as Haskell are non-strict, meaning that values such as func-
tion arguments or let-bindings are evaluated only when necessary. A stronger property is
laziness, which means that these values are evaluated at most once. (Even though the se-
mantics of Haskell only requires non-strictness, in practice all implementations are lazy.)
Finally, maximal laziness means that syntactically identical terms are evaluated at most
once. This is not the case with mere laziness: a compiler is not obliged (or generally capa-
ble) to arrange for the evaluation result of two terms occurring in different locations in the
program, or in different invocations of a function, to be shared. For instance, there is no
guarantee that a lazy Haskell implementation will evaluate the expression product [1..1000]
only once when evaluating variable z in the following program:

x = product [1..1000]

y = product [1..1000]

z = x + y

Maximal laziness simplifies the implementation of the Nix expression evaluator. For
instance, it is not necessary to implement sharing of β -redexes. Without sharing, it is
typically necessary to implement the rule β -REDUCE as follows:

β -REDUCE :
e1
∗7→ x: e3

e1 e2 7→ let x = e2 in e3

where we give let a special “destructive update” semantics so that the evaluation result of
x is written back into the right-hand side of the let-binding [51]. This is typically how
laziness is implemented in functional languages: x is a pointer that points to a piece of
memory containing code and environment pointers (the closure or thunk [134]), which
after evaluation is overwritten with the actual result.

Error messages If Nix expression evaluation fails, or we import a syntactically or oth-
erwise invalid Nix expression, a backtrace is printed of the evaluation stack to give the user
some clue as to the cause of the problem. For instance, if we try to install Subversion from
a Nix expression that calls the one in Figure 2.9 with compressionSupport set to true, but
with zlib set to null, we get the following error message:
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$ nix-env -f ./system/populate-cache.nix -i subversion

error: while evaluating the attribute `subversion'

at `./system/all-packages-generic.nix', line 1062:

while evaluating the function

at `(...)/subversion-1.2.x/default.nix', line 1:

assertion failed

at `(...)/subversion-1.2.x/default.nix', line 19

This tells the user not only what assertion triggered the error, but also where the incor-
rect call to the Subversion function was made (namely, in all-packages-generic.nix at line
1062).

Backtraces in lazy languages are tricky, as a failing value may be finally evaluated in
a piece of code far removed from where the value was “produced” [55]. Consider for
example:

let {

f = b: {x = assert b; 123;};

body = (f false).x;

}

Its evaluation will yield the following backtrace:

error: while evaluating the file `foo.nix':

while evaluating the attribute `body' at `foo.nix', line 3:

while evaluating the attribute `x' at `foo.nix', line 2:

assertion failed at `foo.nix', line 2

Note the absense of a reference to the function f. In a strict language, f would appear in the
backtrace. But also note that since attributes are annotated with position information, we
still get the position of the definition of the attribute x in the body of f.

Another problem with backtraces in lazy languages is that tail-call optimisation [151]
may remove useful stack frames. However, the current Nix expression evaluator does not
optimise tail-calls.

In practice, however, the stack traces printed by Nix are very helpful in everyday use,
as the example above shows. The trace may not show every pertinent code location, and
it may not show them in a meaningful order, but the locations that it does give usually
give enough of a clue to figure out the cause of the problem. A useful improvement is
a kind of slicing for assertion failures (which are the most common type of errors, apart
from missing attributes or function arguments). Currently, the interpreter simply prints that
an assertion has failed, i.e., its condition expression evaluated to false. So it is useful to
print an explanation as to why it is false. For example, if a guard expression p && x != null
evaluates to false, Nix should print whether p is false, or x != null is false. If p is false, it
should give an explanation as to how p obtained that value. In an interpreter (as opposed
to a compiled implementation), this is not hard to implement since the original expression
is still known, not just its normal form.

Optimising substitution There is an important opportunity for optimisation in the im-
plementation of β -reduction: if we substitute a term, e.g., replacing free occurrences of
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x in e1 by e2 in the β -reduction of (x : e1) e2, we never need to substitute under the re-
placements of x. Consider the expression (x : y : e1) e2 e3, where e2 is a large expression.
With normal substitution, we first replace all occurrences of x in e1 with e2. Then, we
replace all occurrences of y in the resulting term with e3. This substitution also descends
into the e2 replacements of x, even though those subterms are closed. Since e2 is large, this
is inefficient.

The optimisation is that we can mark replacement terms to indicate to the substitution
function that it need not descend into such subterms. This is possible because of the fol-
lowing theorems.

Lemma 1. Every term to which a semantic rule is applied during evaluation is closed.

Proof. The property follows by induction on the application of semantic rules. The base
case is the initial terms produced by the parser. Here the induction hypothesis hold trivially
since the parser checks that these terms are closed and aborts with an error otherwise.

For the inductive step, we must show two things.
First, we must show that each rule that takes a closed term produces a closed term. This

can be easily verified. For instance, β -REDUCE yields the body of the function, e3, with
its sole free variable x substituted by the argument. e3 cannot have additional free variables
because the function call e1 e2 is closed, and function calls do not bind variables. Likewise,
the expression yielded by SELECT must be closed because the attribute set in which it was
contained is closed, and attribute sets do not bind variables.

Second, we must show that subterms evaluated in the conditions of rules are closed. This
can also be easily verified. For instance, β -REDUCE recursively evaluates the expression
e1 in a function call e1 e2. Since by the induction hypothesis e1 e2 is closed, it follows that
e1 is also closed, as function calls do not bind variables.

Theorem 2. All substitution terms occurring during evaluation are closed.

Proof. This property follows by inspecting all calls to subst in the evaluation rules and
observing that the substitution terms (i.e., the expressions in subs) are always closed. For
instance, in the rule β -REDUCE, subs = {x e2}. The term e2 is closed because by
Lemma 1 the call e1 e2 is closed, and function calls bind no variables. A similar argument
holds for the subst calls in REC, β -REDUCE’ and WITH.

Since substitution terms are always closed, we can adapt the variable case of the substi-
tution function subst in Figure 4.6 as follows:

subst(subs,x) =


closed(e) if (x closed(e)) ∈ subs
closed(e) if (x e) ∈ subs
x otherwise

That is, replacement terms e are placed inside a wrapper closed(e). (The first case merely
prevents redundant wrapping, e.g., closed(closed(e)), which reduces the effectiveness of
caching and blackholing.) The wrapper denotes that e is a closed subterm under which
no substitution is necessary, since it has no free variables. To actually make use of this
optimisation, we also add a case to subst to stop at closed terms:

subst(subs,closed(e)) = closed(e)
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Of course, during evaluation we must get rid of closed eventually. That’s easy:

CLOSED : closed(e) 7→ e

as a closed term is semantically equivalent to the term that it wraps.
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In Chapter 2, we have seen that Nix offers many advantages over existing deployment
systems, such as reliable dependency information, side-by-side deployment of versions
and variants, atomic upgrades and rollbacks, and so on. And as explained in Chapter 3,
it obtains these properties by imposing a “pointer discipline” on file systems, thus treat-
ing the component deployment problem similar to memory management in programming
languages.

The current and subsequent chapter formalise the operation of the Nix system. This
includes the translation of Nix expressions into store derivations, building store derivations,
the substitute mechanism, garbage collection, the invariants of the Nix store that must hold
to ensure correct deployment, and so on.

There are actually two different variants or models of Nix. The original model is the
extensional model, described in this chapter. It is the model with which we have had the
most experience. It implements all of the deployment properties described in Chapter 2.
The next chapter describes the intensional model which is more powerful in that it allows
the sharing of a Nix store between mutually untrusted users; however, it also places slightly
stricter requirements on components. Most of the aspects of the extensional model carry
over without modification to the intensional model.

This chapter discusses all aspects of the semantics of the extensional model: the basics of
cryptographic hashing (Section 5.1), the notion of File System Objects and the organisation
of the Nix store (Section 5.2), the operation of adding sources and other “atomic” values
to the store (Section 5.3), translating Nix expressions to store derivations (Section 5.4),
building store derivations (Section 5.5), and garbage collection (Section 5.6). It concludes
with an explanation of the notion of extensionality (Section 5.7), which sets up the next
chapter on the intensional model.

5.1. Cryptographic hashes

Since Nix heavily uses cryptographic hash functions in store paths and in other places,
this section introduces some properties and notations that will be used in the remainder of
Part II.

A hash function [36] is a function h : A→ B that maps values from a possibly infinite
domain A onto a finite range B. For instance, h(x ∈ N) = x mod 27 is a hash function that
maps natural numbers to the numbers [0..26]. Given value x ∈ A and y = h(x) ∈ B, the
value x is called the preimage and y is called the hash of x. Since A is typically larger than
B, there must necessarily exist values x1,x2 ∈ A such that h(x) = h(y). These are collisions
of the hash function h. A good hash function will have the property that collisions can be
expected to occur with low probability given the sets of values that will be fed into the hash
function in typical usage patterns.
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A cryptographic hash function [145] is a hash function that maps arbitrary-length byte
sequences onto fixed-length byte sequences, with a number of special properties:

• Preimage resistance: given a value y ∈ B, it should be computationally infeasible to
find an x ∈ A such that y = h(x). Computational infeasibility means that ideally the
most efficient way to find x is a brute-force attack, that is, trying all possible values
in A. This means computing |A|/2 hashes on average.

• Collision resistance: it should be infeasible to find any x1,x2 ∈ A such that h(x1) =
h(x2). Due to the birthday paradox [145], a brute-force attack will find a collision
with probability 1

2 after computing approximately
√
|B| hashes.

• Second preimage resistance: given an x1 ∈ A, it should be infeasible to find another
x2 ∈ A such that h(x1) = h(x2). The difference with collision resistance is that here
x1 is given.

For our purposes collision resistance and second preimage resistance are what matters—
it should not be feasible to find collisions. This is since we do not ever want two different
components in the Nix store to be stored in the same store path. Preimage resistance—
infeasibility of inverting the hash—is not important. We do not care if it is possible to find
a component given a store path.

Prominent examples of cryptographic hash functions are MD5 [141] and SHA-1 [127].
Nix initially used MD5, which produces 128-bit hashes. However, MD5 has recently been
broken [178] in the sense that it is now possible to find collisions with a work effort of a
few hours on conventional hardware. That is, collision resistance has been broken, but this
technique does not find preimages or second preimages.

In the context of Nix, a collision attack such as the one against MD5 means that it
is possible to construct two components that hash to the same store path. Specifically, an
attacker could create two components, one benevolent and one malevolent (e.g., containing
a Trojan horse—a malicious component masquerading as legitimate software), with the
same MD5 hash. The attacker would then publish a Nix expression that uses fetchurl
to download the benevolent component from a server, and finally replace the benevolent
component with the malevolent one on the server. Since on download the hash continues
to match, the deception would not be noticed. Constructing such components is quite easy
(see, e.g., [156, Section 8.4.4], and [120, 105] for examples of the construction of harmless
and harmful executables with matching MD5 hashes). Thus collisions of the underlying
hash are a serious concern.

SHA-1 is a very widely used hash function. It produces 160 bit hashes, making it more
resistant to birthday attacks in theory as it requires 280 hashes on average in a brute-force
attack. However, recent attacks [177, 146] have reduced the effort of finding a collision to
less than 263 hashes. This is still a substantial effort, but it creates enough doubt regarding
the future security of SHA-1 to require a transition away from it (“Attacks always get
better; they never get worse.” [147]).

There are a number of strengthened variants of SHA-1 that produce larger hashes. These
are SHA-224, SHA-256, SHA-384, and SHA-512 [127]. While there are strong doubts
about the future security of these hashes, they represent the best choice until a next-
generation hash function becomes available (e.g., through a similar process as the AES
selection [126]).
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The Nix system uses SHA-256 hashes. However, MD5 and SHA-1 are available in
functions such as fetchurl for compatibility. The use of these hashes is still safe if they
apply to components from a trusted source, since it remains infeasible for a third-party
attacker to find second preimages. However, we should migrate away from these hashes to
SHA-256.

Notation Byte sequences are finite-length sequences of bytes. The size of byte sequence
c is denoted |c|. Given a byte sequence c of size |c|, we write c[i],0 ≤ i < |c| to denote
the (i + 1)’th byte in the sequence. In examples, we write byte sequences initialised from
ASCII characters between quotes, e.g., "Hello" is a byte sequence of length 5.

Given a byte sequence c, we write h = hasht(c) to denote the byte sequence obtained
from the cryptographic hash function algorithm t, where t ∈ {md5,sha1,sha256}.

The function printHash16 returns a hexadecimal string representation of a byte sequence,
useful for printing hashes. It is defined as follows:

printHash16(c) = ∑
0≤i<|c|

(digits16[c[i] div 16]+digits16[c[i] mod 16])

where + and ∑ denote string concatenation, and digits16 is the byte sequence of hexadeci-
mal ASCII characters, i.e., "0123456789abcdef". For example,

printHash16(hashmd5("Hello World")) = "b10a8db164e0754105b7a99be72e3fe5"

There is also a function printHash32 that returns a base-32 string representation of a byte
sequence. It produces representations of length d|c|× 8/ lg32e = d|c|× 8

5e. Since this is
shorter than the representations produced by printHash16 (which have length |c|×2), it is
useful inter alia for the representation of hashes in store paths. It is defined as follows:

printHash32(c) = ∑
d|c|× 8

5 e>i≥0

digits32[( ∑
0≤ j<|c|

c[ j]×256 j)/32i mod 32]

That is, interpreting c as a base-256 encoding of some number, with digits from least
significant to most significant (i.e., a little-endian number), we print the number in base-
32 with digits from most significant to least significant. (Note that the outer summation
denotes string concatenation, while the inner summation denotes integer addition.) The set
of digits is

digits32 = "0123456789abcdfghijklmnpqrsvwxyz"

i.e., the alphanumerics excepting the letters e, o, u, and t. This is to reduce the possibility
that hash representations contain character sequences that are potentially offensive to some
users (a known possibility with alphanumeric representations of numbers [11]). Here is an
example of printHash32:

printHash32(hashsha1("Hello World")) = "s23c9fs0v32pf6bhmcph5rbqsyl5ak8a"

It is sometimes necessary to truncate a hash to a specific number of bytes n. For instance,
below we will truncate 32-byte SHA-256 hashes to 20 bytes (of course, this reduces the
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security of the hash). This truncation is done by cyclically XORing the input with an
initially zero-filled byte array of length n. Formally, the result of truncate(n,c) is defined
by the equation

truncate(n,c)[i] =
⊕

0≤ j<|c|, j mod n=i

c[ j]

where ⊕ denotes the XOR operator.

5.2. The Nix store

5.2.1. File system objects

The Nix store is a directory in the file system that contains file system objects (FSOs)1, such
as files and directories. In the context of the Nix store, FSOs typically represent software
components, user environments and store derivations. As we shall see below, Nix must
perform various operations on FSOs, such as computing cryptographic hashes over their
contents, scanning for strings, rewriting strings, and so on. Thus, it is useful to formalise
the notion of FSOs.

Operating systems have different kinds of objects that live in a file system. All modern
operating systems at the very least have hierarchical directories and files that consist of
unstructured sequences of bytes (as opposed to, say, files consisting of records). Beyond
that, there are many extensions:

• Symbolic links on Unix.

• Permissions, ranging from MS-DOS’s read-only attribute, through Unix’s access
rights, to complex Access Control Lists (Windows NT, various Unixes).

• Extended attributes (OS/2, Windows NT) that allow arbitrary name/value pairs to be
associated with files.

• Streams (Windows NT) or resource forks (Mac OS) that extend the notion of a file
as a sequence of bytes to being sequences of bytes.

• Forests of directory hierarchies (e.g., as formed by drive letters in Windows).

• Hard links that turn file systems into directed acyclic graphs instead of trees.

• Device nodes, FIFOs, named pipes, sockets, and other types of files with special
semantics.

Fortunately, for our purposes—which is storing components in the Nix store—most of
these features are either not relevant (drive letters, device nodes, etc.), can be ignored (hard
links), or are never used in practice (streams). Some others, such as permissions, we will
ignore to make life simpler.

1In the Unix tradition, the term file refers to any file system object (i.e., an FSO), while the term regular file
refers to what most people call a file. This thesis uses the term FSO to avoid the ambiguity.
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data FSO= Regular Executable ByteStream

| Directory [(FileName, FSO)]
| SymLink ByteStream

data Executable= Executable

| NonExecutable

Figure 5.1.: Abstract syntax for file system objects

What we absolutely cannot ignore for deployment of Unix software is regular files,
directories, and symbolic links. Also, while we can get away with disregarding most file
permissions, the executable bit must be maintained2. This leads to the grammar for FSOs
shown in Figure 5.1. (The data type for FSOs shown in this figure uses the Haskell-like
notation described in Section 1.7.) A ByteStream is a sequence of 0 or more bytes, and
a FileName is a sequence of 1 or more bytes not equal to 0. For example, the file system
object

Directory [
("foo",Regular NonExecutable "Hello World"),
("bar",Directory [

("xyzzy",Symlink "../foo")
])

]

defines a directory with two files: a non-executable file foo with contents Hello World, and a
subdirectory bar containing a symlink called xyzzy to foo in the parent directory. Note that
the top-level directory is anonymous. Also note that we do not keep any meta-information
about files other than the executable bit; notably, time stamps are discarded.

The type of FSOs defined in Figure 5.1 is not actually used in the implementation of Nix.
They are merely a device used in this chapter to formalise certain aspects of the operation
of Nix. In the pseudo-code algorithms in this chapter, I will use the imperative functions
fso← readPath(p) to denote reading the FSO fso stored at path p, and writePath(p, fso)
to denote writing FSO fso to path p. For presentational simplicity, I ignore error handling
aspects.

To perform operations on FSOs such as computing cryptographic hashes, scanning for
references, and so on, it is useful to be able to serialise FSOs into byte sequences, which
can then be deserialised back into FSOs that are stored in the file system. Examples of
such serialisations are the ZIP and TAR file formats. However, for our purposes these
formats have two problems:

• They do not have a canonical serialisation, meaning that given an FSO, there can
be many different serialisations. For instance, TAR files can have variable amounts
of padding between archive members; and some archive formats leave the order

2Nix should also support setuid executables, which are programs that are executed under a different user ID
than the caller. However, it is not entirely clear how to support these in a clean way.
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of directory entries undefined. This is bad because we use serialisation to compute
cryptographic hashes over FSOs, and therefore require the serialisation to be unique.
Otherwise, the hash value can depend on implementation details or environment
settings of the serialiser. The canonicity of archives will be particularly important in
Section 7.5, when we apply binary patches to archives.

• They store more information than we have in our notion of FSOs, such as time
stamps. This can cause FSOs that Nix should consider equal to hash to different
values on different machines, just because the dates differ.3

• As a practical consideration, the TAR format is the only truly universal format in the
Unix environment. It has many problems, such as an inability to deal with long file
names and files larger than 233 bytes. Current implementations such as GNU Tar
work around these limitations in various ways.

For these reasons, Nix has its very own archive format—the Nix Archive (NAR) format.
Figure 5.2 shows the serialisation function serialise(fso) that converts an FSO to a byte
sequence containing a NAR archive. The auxiliary function concatMap( f , xs) applies the
function f to every element of the list xs and concatenates the resulting byte sequences.
The function sortEntries sorts the list of entries in a directory by name, comparing the
byte sequences of the names lexicographically. The function serialise is typically used in
conjunction with readPath, e.g.,

c← serialise(readPath(p)).

Of course, there is also a deserialisation operation deserialise(c) (typically used with
writePath) that converts a byte sequence c containing a NAR archive to an FSO. It is the
inverse of serialise and is not shown here. The following identity holds:

deserialise(serialise(fso)) = fso

Note that deserialise is a partial function, since most byte sequences are not valid NAR
archives.

5.2.2. Store paths

A store object is a top-level file system object in the Nix store, that is, a direct child of
the Nix store directory. Indirect subdirectories of the Nix store are not store objects (but
contained in FSOs that are store objects).

A store path is the full path of a store object. It has the following anatomy:

storeDir/hashPart-name

The first part is the path of the Nix store, denoted storeDir. The second is a 160-bit cryp-
tographic hash in base-32 representation. Finally, there is a symbolic name intended for
human consumption. An example of a store path is:

/nix/store/bwacc7a5c5n3qx37nz5drwcgd2lv89w6-hello-2.1.1
3This is no longer a big issue, since Nix nowadays canonicalises all FSOs added to the store by setting irrelevant

metadata to fixed values (see page 112). For instance, it sets the time stamps on all files to 0 (1 Jan 1970,
00:00:00 UTC). However, metadata such as the last-accessed time stamp might still cause non-canonicity.
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serialise(fso) = str("nix-archive-1")+ serialise′(fso)

serialise′(fso) = str("(")+ seralise′′(fso)+ str(")")

serialise′′(Regular exec contents) =
str("type")+ str("regular")

+

{
str("executable")+ str(""), if exec = Executable

"", if exec = NonExecutable
+str("contents")+ str(contents)

serialise′′(SymLink target) =
str("type")+ str("symlink")
+str("target")+ str(target)

serialise′′(Directory entries) =
str("type")+ str("directory")
+concatMap(serialiseEntry, sortEntries(entries))

serialiseEntry((name, fso)) =
str("entry")+ str("(")
+str("name")+ str(name)
+str("node")+ serialise′(fso)
+str(")")

str(s) = int(|s|)+pad(s)
int(n) = the 64-bit little endian representation of the number n
pad(s) = the byte sequence s, padded with 0s to a multiple of 8 bytes

Figure 5.2.: serialise: Serialising file system objects into NAR archive

On the other hand,

/nix/store/bwacc7a5c5n3qx37nz5drwcgd2lv89w6-hello-2.1.1/bin/hello

is not a store path (but it has a prefix that is a store path).
Usually, storeDir is /nix/store, and in this thesis we will tacitly assume that it is. For

binary deployment purposes (Section 5.5.3), it is important that Nix store locations on the
source and target machines match.

The symbolic name consists of one or more characters drawn from the set of letters (in
either case), digits, and the special characters in the set "+-._?=".

We will assume that store paths are always fully canonicalised (see page 73), i.e., they
are absolute, do not contain . or .. elements, and do not have redundant separators (/). The
store path above is in canonical form; a non-canonical example of the same path is:

/nix/../nix//./store/bwacc7a5c5n3qx37nz5drwcgd2lv89w6-hello-2.1.1/
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No component of the store location storeDir is allowed to be a symbolic link. The
reason is that some builders canonicalise paths by resolving symlink components. These
paths may then be stored in derivation outputs as retained dependencies. Then, if storeDir
has different symlink components on different machines, builds on these machines might
not be interchangeable.

In the remainder, we denote the infinite set of syntactically correct store paths as Path.
Syntactic correctness depends on the value of storeDir—the location of the Nix store—but
we leave that implicit. We will use the convenience function hashPart(p) to extract the
hash part of a store path. Likewise, namePart(p) yields the symbolic name part of p.

How do we compute the hash part of store paths? The hash computation has some
important properties. First, both the Nix store path and the symbolic name are part of the
hash. This means that Nix stores in different locations yield different hash parts, and that
sources or outputs that are identical except for their symbolic names have different hash
parts. This is important because the hash scanning approach to dependency determination
described in Section 3.4 only looks at the hash parts of paths, not the symbolic name.

Second, different types of store objects—notably sources and outputs—have different
hashes. This prevents users from adding sources that “impersonate” outputs. In unshared
Nix stores, this is not a major issue, but it is important for security in a shared store that
uses the technique described in Section 6.2 to enable sharing of locally built outputs.

These properties are achieved in the function makePath, which computes store paths as
follows:

makePath(type, descr, name) =
nixStore+ "/"+printHash32(truncate(20, hashsha256(s)))+ "-"+name

where

s = type+ ":sha256:"+descr+ ":"+nixStore+ ":"+name

(Examples will be shown in the remainder of this chapter.) Thus, the hash part of the
store path is a base-32 representation of a 160-bit truncation of a SHA-256 hash of the
variable elements that must be represented in the hash, namely, the location of the Nix store
nixStore, the type of the store object (e.g., "source"), a unique descriptor string describing
the store object (e.g., a cryptographic hash of the contents of the FSO in case of sources),
and the symbolic name.

Why do we truncate the SHA-256 hash to 160 bits? Nix originally used base-16 (hex-
adecimal) representations of 128-bit MD5 hashes, giving a hash part of 128/ lg16 = 32
characters. Since MD5 was recently broken (see Section 5.1), a decision was made to
switch to 160-bit SHA-1 hashes. The hexadecimal representation was at that time replaced
with a base-32 representation, which has the pleasant property of keeping the length at
160/ lg32 = 32 characters. (Some builders strip off hash parts from store paths using a
hard-coded constant of 32 characters (clearly a bad practice), so these did not need to be
changed.) However, as attacks against SHA-1 were also published, SHA-256 was used
instead. Unfortunately, hash parts of d256/ lg32e = 52 characters are a bit too long: to-
gether with the symbolic name, they exceed the maximum file name lengths of some file
systems. In particular, the Joliet extension to ISO-9660 has a maximum file name length
of 64 characters [38]. This would make it difficult to burn Nix stores on a CD-ROM, a
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potentially useful distribution method. For this reason the SHA-256 hash is truncated to
160 bits. The assumption is that this is no less secure than 160-bit SHA-1, and possibly
more secure due to its different structure. However, given that most modern hashes share
the same basic design, the security of all of them might be ephemeral.

5.2.3. Path validity and the closure invariant

Nix maintains meta-information about store paths in a number of database tables. This
information includes the following:

• The set of valid paths, which are the paths that are “finished”, i.e., whose contents
will no longer change. For instance, the output path of a derivation isn’t marked
as valid until the builder that produces it finishes successfully. The contents of an
invalid path are undefined (except when the FSO is under construction, in which
case a lock is used to indicate this fact, as we shall see below).

• The references graph (i.e., the deployment analogue of the pointer graph in program-
ming languages). For each valid path, Nix maintains the set of references to other
valid paths discovered by scanning for hash parts.

• The substitutes that have been registered by tools such as nix-pull (Section 2.6).

• Traceability information: for each valid output path, Nix remembers the derivation
that built it.

The current Nix implementation stores this information in a transactional Berkeley DB
database. As we shall see, transactions are important to ensure that the store invariants
described below always hold, that interrupted operations can be restarted, and that multiple
operations can be safely executed in parallel.

The most important pieces of information in the database are the set of valid paths and
the references graph, which are defined here. The other database tables are defined below.
The type of a database table t is given as t : A→ B, where A is the type of the key and B is
the type of the value corresponding to a key; t[x] denotes the value corresponding to key x.
The special value ε indicates that no entry occurs for a value in the given mapping. Setting
of table entries is denoted by t[x]← y.

The mapping valid : Path→ Hash serves two purposes. First, it lists the set of valid
paths—the paths that have been successfully built, added as a source, or obtained through
a substitute. It does not include paths that are currently being built, or that have been left
over from failed operations. Thus, valid[p] 6= ε means that path p is valid. The following
invariant states that valid paths should exist.

Invariant 1 (Validity invariant). If a path is valid, it exists in the Nix store:

∀p ∈ Path : valid[p] 6= ε → pathExists(p)

Second, the valid mapping stores a SHA-256 cryptographic hash of the contents of each
valid path. That is, when the path is made valid, the valid entry for the path is set as follows:

valid[p]← "sha256:"+printHash32(hashsha256(serialise(readPath(p))))

95



5. The Extensional Model

(The name of the hash algorithm is incorporated to facilitate future upgrading of the hash
algorithm.) For instance, given a valid path /nix/store/bwacc7a5c5n3...-hello-2.1.1 with an
FSO whose serialisation has SHA-256 hash 085xkvh8plc0..., we have

valid["/nix/store/bwacc7a5c5n3...-hello-2.1.1"] = "sha256:085xkvh8plc0..."

The purpose of storing these content hashes is to detect accidental tampering with store
objects, which are supposed to be read-only. The command nix-store --verify --check-
contents checks that the contents of store paths are still consistent with their stored hashes.
That is, the following invariant must hold.

Invariant 2 (Stored hash invariant). The contents at valid store paths correspond to the
cryptographic hashes stored in the valid table:

∀p ∈ Path : valid[p] 6= ε →
valid[p] = "sha256:"+printHash32(hashsha256(serialise(readPath(p))))

The mapping references : Path→ {Path} maintains the references graph, i.e., the set
of store paths referenced by each store object. For sources, the references are usually
empty. For store derivations, they are exactly the union of the store paths listed in its
inputSrcs and inputDrvs fields. For output paths, they are found through scanning using
the method outlined in Section 3.4. As we will see in Section 5.6.3, the references graph
is acyclic except for trivial cycles defined by self-references, i.e., when p ∈ references[p].
Self-references occur when a builder stores its output path in its output.

An important property of the Nix store is that at all times the following invariant holds.

Invariant 3 (Closure invariant). The set of valid paths is closed under the references
relation:

∀p ∈ Path : valid[p] 6= ε →∀p′ ∈ references[p] : valid[p′] 6= ε

The closure of a valid path p is the set of all paths reachable by traversing references
from p:

closure(p) = {p}∪
⋃

p′∈references[p]

closure(p′)

As I explained in Section 2.1, the closure is vitally important for correct deployment, since
the closure of a component is the set of paths that might be accessed in an execution
involving the component. The closure is what must be copied in its entirety when we
deploy the component. Invariant 3 (closure) and Invariant 1 (validity) together give us
complete deployment: if a path p is valid, then all its potential runtime dependencies are
also valid; and all these paths exist in the file system.

The references graph is also maintained in the opposite direction. Nix maintains a map-
ping referers : Path→ {Path} that defines the transpose of the graph defined by the refer-
ences mapping4. Thus, the following invariant must hold.

4The referers table should properly be spelled referrers. However, the Nix implementation unwittingly followed
the unfortunate tradition established by the HTTP standard, which has a misspelled Referer header field [57].
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Invariant 4 (Integrity invariant). The graphs defined by the references and referers map-
pings are each other’s transposes:

∀p, p′ ∈ Path : p ∈ references(p′)↔ p′ ∈ referers(p)

We can also compute the closure of a valid path under the referers relation (the referrer
closure):

closureT (p) = {p}∪
⋃

p′∈referers[p]

closureT (p′)

This is the set of all paths that can reach path p in the references graph. Note that while
closure(p) is constant for a valid path (i.e., can never change due to the immutable nature
of valid objects), closureT (p) is variable, since additional referrers can become valid (e.g.,
due to building), and existing referrers can become invalid (due to garbage collection).

The main application of referrers is to allow users to gain insight in the dependency
graph. The command nix-store --query --referers allows users to query what paths refer to
a given path. For instance,

$ nix-store -q --referers /nix/store/wa2xjf809y7k...-glibc-2.3.5

/nix/store/vcwh8w6ryn37...-libxslt-1.1.14

/nix/store/vfps6jpav2h6...-gnutar-1.15.1 [...]

shows the components in the store that use a particular instance of Glibc. Likewise, the
command nix-store --query --referers-closure prints all paths that directly or indirectly refer
to the given path.

5.3. Atoms

A basic operation on the Nix store is to add atoms to the store. Atoms are store objects that
are not derived, that is, are not built by performing a store derivation. The foremost exam-
ples of atoms are sources referenced from derivations in Nix expressions (e.g., builder.sh
in Figure 2.6), and store derivations.

The operation addToStore(fso, refs, name) shown in Figure 5.3 adds an FSO fso to the
Nix store. The store path is computed from the cryptographic hash of the serialisation of
fso, and the symbolic name name. The references entry for the resulting path is set to refs.

The operation works as follows. It computes the cryptographic hash over the serialisa-
tion of the FSO, and uses that and name to construct the store path p 45 . If path p is not
valid 47 , the FSO is written to path p 48 . The path is marked as valid, with the references
of p set to refs 49 . The references are set by the helper function setReferences 50 , which
also updates the corresponding referrer mappings. The remainder of the code is concerned
with concurrency.

The hash part of path p is essentially a cryptographic hash of the atom being added.
Therefore there is a correspondence between the file name of the store object created
by addToStore, and its contents. As a consequence, knowing the contents of an FSO
(and its symbolic name) also tells one its store path. This property is known as content-
addressability. It does not hold for all store objects: derivation outputs are not content-
addressable, since their output paths are computed before they are built (as we will see in
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addToStore(fso, refs, name) :
c← serialise(fso)
h← hashsha256(c)
p←makePath("source", printHash16(h), name) 45
if valid[p] = ε : 46

lock← acquirePathLock(p)
if valid[p] = ε : 47

if pathExists(p) :
deletePath(p)

writePath(p, fso) 48
in a database transaction : 49

valid[p]← h
setReferences(p, refs)

releasePathLock(p, lock)
return p

setReferences(p, refs) 50
references[p]← refs
for each p′ ∈ refs :

referers[p′] ∪←{p}

Figure 5.3.: addToStore: Adding atoms to the Nix store

Section 5.4). This is in fact the defining characteristic of the extensional model. In the
intensional model described in Chapter 6, content-addressability is extended to all store
objects.

Concurrency We have to take into account the remote possibility that parallel Nix pro-
cesses simultaneously try to add the same atom. If this happens, the operations should be
idempotent, and the contents of a path should never change after it has been marked as
valid. There should be no race conditions, e.g.:

1. Process A detects that the target path p is invalid, and starts writing the atom to p.

2. Process B detects that p is invalid, and wants to write the atom to the target path, but
there is an obstructing file at p. As it cannot make assumptions about invalid paths,
it deletes p and starts writing the atom to p.

3. While B is half-way through, A finishes writing and marks the path as valid. Note
that some of A’s writes have been deleted.

4. Before B finishes writing, A starts the builder of a derivation that has p as input. The
builder uses the incorrect contents of p.

There are several solutions to prevent races. The simplest one is to use a global mutex
lock on the Nix store for all operations that modify the store. These operations are the
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acquirePathLock(p) :
while true:

fd← open(p+ ".lock", O_WRONLY|O_CREAT, 0666)
fcntl(fd,F_SETLKW, ...F_WRLCK...) 51
if size of file fd = 0 : 52

return fd 53
close(fd)

releasePathLock(p, fd) :
deleteAndSignal(p+ ".lock", fd)

deleteAndSignal(p, fd) :
deletePath(p)
write(fd, "deleted") 54
close(fd) 55

Figure 5.4.: acquirePathLock and releasePathLock: Locking on Unix

addition of atoms, the building of derivations (Section 5.5), and garbage collection (Sec-
tion 5.6). Every Nix process acquires the lock on startup, and releases it when finished.
If the lock is already held, processes block until it becomes available. This approach is
clearly unacceptable because of the unbounded latency it introduces for Nix operations.

A better solution is fine-grained locking, where a process acquires a mutex lock on the
specific store path that it wants to add. The locking operations lock← acquirePathLock(p)
and releasePathLock(p, lock) essentially acquire and release a lock on a temporary file
p.lock, i.e., p with the extension .lock appended.

Figure 5.4 shows pseudo-code for an implementation of these operations on Unix. It
uses the POSIX standard system call fcntl, which locks byte ranges in files [152]. The
advantage of POSIX locks is that they are released automatically when the process holding
them dies, either normally or abnormally. In contrast, the use of file existence as a mutex
makes it harder to recover gracefully from abnormal termination and system crashes.

A mostly aesthetic complication is that we don’t want the lock files to hang around
indefinitely. They should be removed when they are no longer necessary, i.e., when p
has been registered as being valid. Deleting the lock file after we have released the lock
introduces a subtle race, however:

1. Process A creates the lock file p.lock and locks it.

2. Process B opens the lock file, attempts to acquire a lock, and blocks.

3. Process A sees that p is invalid, and begins to write to p. However, it is interrupted
before it can make p valid.

4. As part of its cleanup, process A releases the lock, closes and deletes the lock file,
and terminates. Note that B still has the file open; on Unix it is possible to delete
open files.
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5. Process B acquires the lock.

6. Process B sees that p is invalid, and begins to write to it.

7. Process C creates the lock file p.lock and locks it. This is a different file than the one
currently opened by B—it has a different inode number. Thus C can acquire a lock.

8. Process C sees that p is invalid, and begins to write to it.

9. Now processes B and C are concurrently writing to p.

To prevent this race, we have to signal to process B that the lock file it has open has
become “stale”, and that it should restart. This is done by the function deleteAndSignal,
called by the deleting process: it writes an arbitrary string (the deletion token) to the deleted
file 54 . If another process subsequently acquires a lock 51 , but sees that the size of the file
is non-zero 52 , then it knows that its lock is stale.

On Windows, there is a much simpler solution: we just try to delete the file, which will
fail if it is currently opened by any other process. Thus, the file will be deleted by the last
process to release the lock, provided no new lockers have opened the lock file.

The dual checks for path validity are an optimisation ( 46 , 47 ). Strictly speaking, the
initial path validity check 46 can be omitted. However, the extra check prevents a lock
creation and acquisition in the common case where the path is already valid.

5.4. Translating Nix expressions to store derivations

Nix does most of its work on store derivations, introduced in Section 2.4. Store derivations
are the result of the evaluation of high-level Nix expressions. Nix expressions can express
variability, store derivations cannot—a store derivation encodes a single, specific, constant
build action.

The command nix-instantiate performs precisely this translation: it takes a Nix expres-
sion and evaluates it to normal formal using the expression semantics presented in Sec-
tion 4.3.4. The normal form should be a call to derivation, or a nested structure of lists and
attribute sets that contain calls to derivation. In any case, these derivation Nix expressions
are subsequently translated to store derivations using the method described in this section.

The resulting store derivations can then be built, as described in the next section. The
command nix-store --realise does exactly that. The high-level package management com-
mand nix-env combines translation and building as a convenience to users.

The abstract syntax of store derivations is shown in Figure 5.5 in a Haskell-like [135]
syntax (see Section 1.7). The store derivation example shown in Figure 2.13 is a value
of this data type. The outputHash and outputHashAlgo fields implement so-called fixed-
output derivations and are discussed in Section 5.4.1. The other fields were explained in
Section 2.4.

So suppose that we have an expression e that evaluates to derivation e′, and e′ evaluates
to an attribute set {as}. According to the DERIVATION and DERIVATION! rules (page 80),
e then (essentially) evaluates to the result of calling instantiate(as). instantiate is a function
that translates the argument attribute set of a call to derivation to a store derivation, writes
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data StoreDrv = StoreDrv {
output : Path,
outputHash : String,
outputHashAlgo : String,
inputDrvs : [Path],
inputSrcs : [Path],
system : String,
builder : Path,
args : [String],
envVars : [(String,String)]

}

Figure 5.5.: Abstract syntax of store derivations

as a side-effect the store derivation to the Nix store5, and returns the original attribute set,
with the following three attributes added:

• drvPath contains the path of the store derivation.

• outPath contains the output path of the store derivation, that is, d.output.

• type is set to the value "derivation". This allows instantiate to detect that attribute sets
occurring in its arguments are actually subderivations. It also allows nix-instantiate
and nix-env to see whether evaluation results are actually derivations.

The function instantiate is shown in Figure 5.6. Its main job is to construct a store
derivation 56 which is written to the Nix store using addToStore 65 . The hard part is in
filling in the fields of the store derivation from the attributes as. In particular, we need to
compute the following bits of information:

• We need an output path (the field output). The output path reflects all information
that goes into the derivation. Therefore we initially leave output empty 57 , then
compute a cryptographic hash over this initial derivation and use makePath to con-
struct the actual path 64 . The hash is computed using the function hashDrv, which
conceptually just computes a SHA-256 hash over a concrete syntax representation
of the store derivation. However, the notion of fixed-output derivations complicates
matters a bit. The actual operation of hashDrv is discussed below. The final output
path is also placed in the out environment variable, in order to communicate the path
to the builder.

• We need to compute the environment variable bindings envVars 63 . envVars is a set
of name/value tuples. Each attribute 〈n = e〉 in {as} is mapped to an environment
variable binding. This translation is done by the function processBinding shown in
Figure 5.7. It takes e and returns, among other things, a string representation of

5Aficionados of purely functional programming languages may be dismayed by the impurity of producing a
store derivation as a side-effect. However, the side-effect is not observable in the Nix expression evaluation,
and the idempotency of the operation ensures that equational reasoning still holds.
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instantiate(as) :
name← eval(as.name)
if name ends in ".drv" : abort
if name contains invalid characters : abort
d← StoreDrv { 56

output = "" 57
outputHash = eval(as.outputHash) if attr. exists, "" otherwise
outputHashAlgo = "" 58

("r:" if eval(as.outputHashMode) = "recursive", "" otherwise) +
(eval(as.outputHashAlgo) if attr. exists, "" otherwise)

inputDrvs = {processBinding(e).drvs | 〈n = e〉 ∈ as} 59
inputSrcs = {processBinding(e).srcs | 〈n = e〉 ∈ as} 60
system = eval(as.system) // Must evaluate to a string.
builder = concSp(processBinding(as.builder).res) 61
args = map(λe . processBinding(e).res, as.args) 62
envVars = {(n, concSp(processBinding(e).res)) | 〈n = e〉 ∈ as} 63
∪ {(out, "")}

}
d.output←makePath("output:out", hashDrv(d), name) 64
d.envVars["out"]← d.output
p← addToStore(printDrv(d), d.inputDrvs ∪ d.inputSrcs, name+ ".drv") 65
return {outPath = d.output, drvPath = p}

Figure 5.6.: instantiate: Instantiation of store derivations from a Nix expression

the normal form of e. processBinding is discussed in more detail below. However, it
should be pointed out here that processBinding returns a list of strings, since attribute
values can be lists of values. For instance, it is common to communicate a list of
paths of components to a builder:

buildInputs = [libxml2 openssl zlib];

Since the value of an environment variable is a plain string, the list of
strings returned by processBinding is concatenated with spaces separating the el-
ements; e.g., "/nix/store/ngp50703j8qn...-libxml2-2.6.17t/nix/store/8ggmblhvzciv...-
openssl-0.9.7ft/nix/store/kiqnkwp5sqdg...-zlib-1.2.1" where t denotes a space.

• Likewise, processBinding is used to set the command-line arguments from the args
attribute 62 , and the builder from the builder attribute 61 . Since args is a list, we do
not need to concatenate the strings returned by processBindings.

• The system field is initialised from the system attribute.

• The set of input derivations inputDrvs (the build-time dependencies) is the set of
store paths of derivations that occur in the attributes 59 . These are discovered by
processBinding.
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processBinding(e) :
e′← eval(e)
if e′ = true :

return {drvs = /0, srcs = /0, res = ["1"]}
if e′ = false :

return {drvs = /0, srcs = /0, res = [""]}
if e′ = a string s :

return {drvs = /0, srcs = /0, res = [s]}
if e′ = null :

return {drvs = /0, srcs = /0, res = [""]}
if e′ = a path p : 66

p′← addToStore(readPath(p), /0, baseName(p))
return {drvs = /0, srcs = {p′}, res = [p′]}

if e′ = an attribute set {as} with as.type = "derivation" : 67
// Note that {as} is the result of a call to derivation.
return {drvs = {eval(as.drvPath)}, srcs = /0, res = [eval(as.outPath)]}

if e′ = a list [ls] : 68
ps←map(processBinding, ls)
return
{ drvs =

⋃
p∈ps p.drvs, srcs =

⋃
p∈ps p.srcs

, res = concatMap(λ p . p.res, ps)}
abort

Figure 5.7.: processBinding: Processing derivation attributes

• The set of input sources inputSrcs is the set of store paths of sources that occur in
the attributes 60 . These are also discovered by processBinding.

Processing the attributes Clearly, the core of the translation is the function process-
Binding, shown in Figure 5.7. It evaluates a Nix expression, inspects it, and returns three
pieces of information in a structure:

• A list of strings that represent the normal form of the expression (res).

• The set of store paths of derivations occurring in the expression (drvs).

• The set of store paths of sources occurring in the expression (srcs).

Simple values like strings, Booleans, and null map to singleton string lists. For instance,
true is translated to ["1"], and false is translated to [""]. The latter is so that we can write in
shell scripts:

if test -n "$var"; then ... fi

to test whether Boolean variable $var is set.
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For lists, processBinding is applied recursively to the list elements 68 . The resulting
string lists are concatenated into a single list. Thus, nested lists are allowed; they are
flattened automatically.

For paths, processBinding copies the referenced FSO to the Nix store using addToStore
and returns the resulting path in srcs and res 66 . Thus all referenced sources end up in the
Nix store. The file name of the source (returned by the function baseName) is used as the
symbolic name of the store path.

For attribute sets, processBinding checks whether the type attribute of the derivation (if
present) is equal to derivation. If so, the value denotes the result of a call to derivation. This
is where instantiate recurses into subderivations: instantiate calls processBinding, which
calls eval, which eventually calls instantiate for derivations occurring in the input attributes.

Let us look at an example. Suppose that we have a derivation

args = ["-e" ./builder.sh python];

where python is a variable that evaluates to another derivation. Since this is a list, process-
Binding will recurse into the list elements. This yields the following results. For "-e", we
get

{drvs = /0,srcs = /0, res = ["-e"]}.

For ./builder.sh, the file builder.sh in the current directory is added to the Nix store using
addToStore. Supposing that the file has SHA-256 hash 49b96daeab53... in hexadecimal,
addToStore will call makePath with the following arguments:

makePath("source", "49b96daeab53...", "builder.sh").

makePath constructs the hash part by hashing and truncating the following string

source:sha256:49b96daeab53...:/nix/store:builder.sh

into 043577cf3vlb.... The store path thus becomes /nix/store/043577cf3vlb...-builder.sh, and
processBinding returns

{ drvs = /0,srcs = {/nix/store/043577cf3vlb...-builder.sh}
, res = ["/nix/store/043577cf3vlb...-builder.sh"] }.

For python, if we suppose that it evaluates to an attribute set with drvPath = /nix/store/-
mi4p0ck4jqds...-python-2.4.1.drv and outPath = /nix/store/s3dc4m2zg9bb...-python-2.4.1,
processBinding returns

{ drvs = {/nix/store/mi4p0ck4jqds...-python-2.4.1.drv},srcs = /0
, res = ["/nix/store/s3dc4m2zg9bb...-python-2.4.1"] }.

Note that the path of the store derivation is placed in drvs (and will therefore eventually end
up in the inputDrvs of the referring derivation), since the derivation is needed to recursively
build this dependency when we build the current derivation. On the other hand, the path of
the output of the derivation is placed in res (and will end up in an environment variable or
command-line argument), since that is what the builder is interested in.
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Derive(

[("out","/nix/store/bwacc7a5c5n3...-hello-2.1.1","","")],

[("/nix/store/7mwh9alhscz7...-bash-3.0.drv",["out"]),

("/nix/store/fi8m2vldnrxq...-hello-2.1.1.tar.gz.drv",["out"]),

("/nix/store/khllx1q519r3...-stdenv-linux.drv",["out"]),

("/nix/store/mjdfbi6dcyz7...-perl-5.8.6.drv",["out"])],

["/nix/store/d74lr8jfsvdh...-builder.sh"],

"i686-linux",

"/nix/store/3nca8lmpr8gg...-bash-3.0/bin/sh",

["-e","/nix/store/d74lr8jfsvdh...-builder.sh"],

[("builder","/nix/store/3nca8lmpr8gg...-bash-3.0/bin/sh"),

("name","hello-2.1.1"),

("out","/nix/store/bwacc7a5c5n3...-hello-2.1.1"),

("perl","/nix/store/h87pfv8klr4p...-perl-5.8.6"),

("src","/nix/store/h6gq0lmj9lkg...-hello-2.1.1.tar.gz"),

("stdenv","/nix/store/hhxbaln5n11c...-stdenv-linux"),

("system","i686-linux")] )

Figure 5.8.: ATerm representation of the Hello derivation

Finally, the results of the recursive calls are combined for the list, and we get

{ drvs = {/nix/store/mi4p0ck4jqds...-python-2.4.1.drv}
, srcs = {/nix/store/043577cf3vlb...-builder.sh}
, res = ["-e" "/nix/store/043577cf3vlb...-builder.sh"

"/nix/store/s3dc4m2zg9bb...-python-2.4."] }.

Writing the derivation When the final output path of the derivation has been computed,
we write a string representation of the store derivation to the Nix store using addTo-
Store 65 . The function printDrv returns a byte sequence that represents the store derivation.
The contents of the byte sequence is a textual ATerm. ATerms [166] are a simple format
for the exchange of terms. For the Hello example, the ATerm representation is shown in
Figure 5.86.

I will not formalise the translation to ATerms here, which is straightforward. However,
the reader may be wondering about the presence of the "out" strings in the ATerm encoding
of the inputDrvs field, as these do not occur in the abstract syntax, and about the fact that
output is a list here, also containing the mysterious "out" string. This is actually for future
compatibility with a Nix semantics that supports multiple output paths. Every derivation
would produce a set of labelled outputs, the default output having label out. Multiple out-
puts allow more fine-grained deployment. In Section 6.7, I show a semantics that supports
this.

Note that in the call to addToStore, we set the references of the new store object to the
union of the store derivations (inputDrvs) and sources (inputSrcs) used by the derivation.
Thus, the references graph is maintained for store derivations. This means that we can
query the closure of a derivation, which is the set of files necessary to do a build of the

6Whitespace has been added to improve legibility. Actual textual ATerms as produced by the function ATwrite-
ToString() in the ATerm API do not contain whitespace. In other words, ATwriteToString() produces a canonical
representation of an ATerm, and thus of the store derivation it represents.
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derivation and all its dependencies. As we saw in Section 2.4, this is useful for source
deployment.

On the other hand, the path in the output field is not a reference of the store derivation,
since the output in general does not exist yet, and because we want garbage collection of
derivations and outputs to be independent.

5.4.1. Fixed-output derivations

The only remaining aspect of the translation is the computation of the output path by
hashDrv. As stated above, conceptually the output path is constructed from a SHA-256
hash over the ATerm representation of the initial store derivation (i.e., the one with output
set to the empty string 57 ). However, the matter is complicated by the notion of fixed-
output derivations.

Fixed-output derivations are derivations of which we know the output in advance. More
precisely, the cryptographic hash of the output path is known to the Nix expression writer.

The rationale for fixed-output derivations is derivations such as those produced by the
fetchurl function. This function downloads a file from a given URL. To ensure that the
downloaded file has not been modified, the caller must also specify a cryptographic hash
of the file. For example,

fetchurl {

url = http://ftp.gnu.org/pub/gnu/hello/hello-2.1.1.tar.gz;

md5 = "70c9ccf9fac07f762c24f2df2290784d";

}

It sometimes happens that the URL of the file changes, e.g., because servers are reorganised
or no longer available. We then must update the call to fetchurl, e.g.,

fetchurl {

url = ftp://ftp.nluug.nl/pub/gnu/hello/hello-2.1.1.tar.gz;

md5 = "70c9ccf9fac07f762c24f2df2290784d";

}

If a fetchurl derivation followed the normal translation scheme, the output paths of the
derivation and all derivations depending on it would change. For instance, if we were to
change the URL of the Glibc source distribution—a component on which almost all other
components depend—massive rebuilds will ensue. This is unfortunate for a change which
we know cannot have a real effect as it propagates upwards through the dependency graph.

Fixed-output derivations solve this problem by allowing a derivation to state to Nix that
its output will hash to a specific value. When Nix builds the derivation (Section 5.5), it
will hash the output and check that the hash corresponds to the declared value. If there is
a hash mismatch, the build fails and the output is not registered as valid. For fixed-output
derivations, the computation of the output path only depends on the declared hash and hash
algorithm, not on any other attributes of the derivation.

Figure 5.9 shows the definition of the fetchurl function. The expression presented here
is somewhat simplified from the actual expression in Nixpkgs, which accepts SHA-1 and
SHA-256 hashes in addition to MD5 hashes. A fixed-derivation output is declared by
defining the following attributes:
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{stdenv, curl}: # The `curl' program is used for downloading.

{url, md5}:

stdenv.mkDerivation {

name = baseNameOf (toString url);

builder = ./builder.sh;

buildInputs = [curl];

# This is a fixed-output derivation;

# the output has to have MD5 hash `md5'.

outputHashMode = "flat";

outputHashAlgo = "md5";

outputHash = md5;

inherit url;

}

Figure 5.9.: pkgs/build-support/fetchurl/default.nix: fixed-output derivations in fetchurl

• The attribute outputHashAlgo specifies the hash algorithm: outputHashAlgo ∈ {
"md5", "sha1", "sha256"}.

• The attribute outputHash specifies the hash in either hexadecimal or base-32 nota-
tion, as autodetected based on the length of the string.

• The attribute outputHashMode ∈ {"recursive", "flat"} states whether the hash is com-
puted over the serialisation of the output path p, i.e., hash(serialise(readPath(p))),
or over the contents of the single non-executable regular file at p, respectively. The
latter (which is the default) produces the same hashes as standard Linux commands
such as md5sum and sha1sum.

Recursive mode is useful for tools that download directory hierarchies instead of
single files. For instance, Nixpkgs contains a function fetchsvn that exports revisions
of directory hierarchies from Subversion repositories, e.g.,

fetchsvn {

url = https://svn.cs.uu.nl:12443/repos/trace/nix/trunk;

rev = 3297;

md5 = "2a074a3df23585c746cbcae0e93099c3";

}

For historical reasons, the outputHashMode attribute is encoded in the outputHash-
Algo field 58 .

These three attributes are used in the output path computation. This means that, for
instance, the url attribute in fetchurl derivation is disregarded. Thus, instantiation of the
two fetchurl calls shown above produces two store derivations that have the same output
field.
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hashDrv(d) :
if d.outputHash 6= ""

return hashsha256("fixed:out:"+d.outputHashAlgo
+":"+d.outputHash
+":"+d.output)

else :
d′← d { // I.e., d′ is a modified copy of d

inputDrvs = {hashDrv(parseDrv(readPath(p))) | p ∈ d.inputDrvs} ) 69
}
return hashsha256(printDrv(d′))

Figure 5.10.: hashDrv: Hashing derivations modulo fixed-output derivations

So how do we compute the hash part of the output path of a derivation? This is done
by the function hashDrv, shown in Figure 5.10. It distinguishes between two cases. If the
derivation is a fixed-output derivation, then it computes a hash over just the outputHash
attributes7.

If the derivation is not a fixed-output derivation, we replace each element in the deriva-
tion’s inputDrvs with the result of a call to hashDrv for that element. (The derivation at
each store path in inputDrvs is converted from its on-disk ATerm representation back to a
StoreDrv by the function parseDrv.) In essence, hashDrv partitions store derivations into
equivalence classes, and for hashing purpose it replaces each store path in a derivation
graph with its equivalence class.

The recursion in Figure 5.10 is inefficient: it will call itself once for each path by which
a subderivation can be reached, i.e., O(V k) times for a derivation graph with V derivations
and with out-degree of at most k. In the actual implementation, memoisation is used to
reduce this to O(V +E) complexity for a graph with E edges.

5.5. Building store derivations

After we have translated a Nix expression to a graph of store derivations, we want to
perform the build actions described by them. The command nix-store --realise does this
explicitly, and nix-env and nix-build do it automatically after store derivation instantiation.

The postcondition of a successful build of a derivation is that the output path of the
derivation is valid. This means that a successful derivation is performed only once (at least
until the user runs the garbage collector). If the output is already valid, the build is a trivial
operation. If it is not, the build described by the derivation is executed, and on successful
completion the output path is registered as being valid, preventing future rebuilds.

The build algorithm is also where binary deployment using substitutes is implemented.
If we want to build a derivation with output path p, p is not valid, and we have a substitute
for p, then we can execute the substitute to create p (which the substitute will generally

7...as well as the output field. This field is empty when hashDrv is called for “unfinished” derivations from in-
stantiate 64 , but it contains an actual path when hashDrv calls itself recursively for “finished” derivations 69 .
This ensures that the name attribute and the location of the store are taken into account.
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do by downloading a pre-built binary and unpacking it to p). Substitution is discussed
in Section 5.5.3; here we just assume that there exists a function substitute(p) : Bool that
returns true if path p is valid or it has managed to make p valid by executing a substitute,
and false otherwise.

This section shows how Nix builds store derivations. It first presents a “simple” build
algorithm that recursively builds store derivations. Next, it introduces the concept of build
hooks, which are a mechanism to support distributed multi-platform builds in a transpar-
ent and centralised manner. Finally it shows a build algorithm that can perform multiple
derivations in parallel.

5.5.1. The simple build algorithm

The build algorithm is shown in Figure 5.11. The function build takes as its sole argument
the store path pdrv of the derivation to be built. It returns the output path of the derivation
if the build succeeds, and aborts if it does not. It consists of the following main steps:

70 First, we need to ensure that the derivation pdrv exists. If it does not, it might be
possible to obtain it through a substitute. It is a fatal error if pdrv cannot be made
valid. In any case, when pdrv is valid, it is read into d, a value of the type StoreDrv
shown in Figure 5.5.

While the primary purpose of substitutes is to speed up the construction of deriva-
tion outputs, they may also be used to distribute the store derivations themselves. In
general, what we distribute to client machines are Nix expressions, and the transla-
tion of those will cause the store derivations to be created locally. However, it is also
possible to forego Nix expressions entirely and work directly on store derivations.
For instance, nix-env allows one to install a store derivation directly:

$ nix-channel --update

$ nix-env -i /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

If /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv is not valid, it is possible that a sub-
stitute for it is available (e.g., obtained from a subscribed channel). The primary
advantage of skipping Nix expressions in this manner is that it makes one indepen-
dent of the evolution of the Nix expression language, removing a possible source
of incompatibility between the distributor and the clients. This is in fact one of the
main advantages of the two-step build process.

71 We try to substitute the output path of the derivation. If it is already valid (as stated
above, substitute checks for this trivial case), or it can be produced through a substi-
tute, we’re done right away.

72 Since the output is not valid and there is no substitute, we have to perform the build
action. We need to build all input derivations in inputDrvs, or, more precisely, we
need to ensure that the output paths of the input derivations are valid. So we recur-
sively build the input derivations.

Note that it is not necessary to ensure that the input sources in inputSrcs are valid.
This is because of the closure invariant: the inputSrcs are all in the references
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build(pdrv) :
if ¬ substitute(pdrv) : abort 70
d← parseDrv(readPath(pdrv))
if substitute(d.output) : return d.output 71

inputs← /0
for each p ∈ d.inputsDrvs : 72

build(p)
d′← parseDrv(readPath(p))
inputs ∪← closure(d′.output) 73

for each p ∈ d.inputsSrcs :
inputs ∪← closure(p) 74

lock← acquirePathLock(d.output) 75
if valid[d.output] 6= ε :

releasePathLock(d.output, lock)
return d.output

if d.system 6= thisSystem : abort 76
if pathExists(d.output) : deletePath(d.output) 77
ptmp← createTempDir() 78
Run d.builder in an environment d.envVars

and with arguments d.args and in directory ptmp 79
if the builder exits with exit code 6= 0 :

deletePath(d.output)
abort

canonicalisePathContents(d.output) 80
if d.outputHash 6= "" : 81

Extract mode m and hash algorithm t from d.outputHashAlgo
if m indicates flat mode :

Check that d.output is a non-executable regular file
and that hasht(readFile(d.output)) matches d.outputHash

else :
Check that hasht(serialise(readPath(d.output))) matches d.outputHash

In a database transaction : 82
valid[d.output]← hashsha256(serialise(readPath(d.output)))
setReferences(d.output, scanForReferences(d.output, inputs))
deriver[d.output]← pdrv

releasePathLock(d.output, lock)
return d.output

Figure 5.11.: build: Building store derivations
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entry for pdrv (cf. Figure 5.6), and thus validity of pdrv implies validity of each
p ∈ d.inputSrcs. Likewise, we know for sure that we can load the input derivations,
since these too are references of pdrv.

75 We acquire an exclusive lock on the output path. Once we have acquired the lock, we
know that there is no other Nix process building the output path (including through
substitutes, since as we will see, substitute also locks properly).

However, once we have acquired the lock, it is possible that another process got
there first, i.e., saw that the output was invalid, acquire the lock, and did the build.
This can be detected by checking once more whether the output path is valid. If it
is, we’re done.

Thanks to locking and the transactional semantics of registering valid paths (step
82 described below), an interrupted operation (such as building a derivation) can
always be restarted, requiring no further recovery. It also ensures that all operations
are idempotent, i.e., can be repeated any number of times. Operations can also be
run in parallel. In particular, it is safe to run multiple build actions in parallel. Since
locking is fine-grained, as opposed to having a global lock for the entire Nix store,
parallel execution can be used to speed up builds. If more than one CPU is available,
this gives better resource utilisation. However, even if there is only one CPU, we may
get a performance improvement if some of the builds are heavily I/O-bound [6].

76 It is only possible to build the derivation if the current machine and operating system
match the system field of the derivation. A Nix installation on an i686-linux machine
cannot build a derivation for a powerpc-darwin machine. The platform type of the
running Nix instance is denoted by thisSystem. However, Section 5.5.2 describes an
extension to the build algorithm that enables distributed multi-platform builds.

77 It is possible that the output path already exists, even though it is not valid. Typically,
this is because a previous build was interrupted before the builder finished or before
the output could be registered as valid. Such a residual output can interfere with the
build, and therefore must be deleted first.

78 Builds are executed in a temporary directory ptmp that is created here (typically, it is
a fresh subdirectory of /tmp). ptmp is deleted automatically after the builder finishes
(not shown here). The temporary directory provides a place where the builder can
write scratch data. For instance, the unpacking and compiling of the Hello sources
performed by the Hello builder in Figure 2.7 is done in the temporary directory.
The fact that the temporary directory is initially empty reduces the possibility of
interference due to files pre-existing in the builder’s initial current directory.

79 Here we actually perform the build by running the executable indicated by the builder
field of the derivation, with the command-line arguments args and the environment
variables envVars, and with the current directory set to ptmp. Note that envVars
specifies the complete environment; the builder does not inherit any environment
variables from the caller of the Nix process user. This prevents interference from
environment variables such as PATH.

111



5. The Extensional Model

In the real implementation some additional variables are initialised to specific val-
ues. The variable TMPDIR is set to ptmp so that tools that need temporary space write
to that directory, reducing the possibility of interference, left-over files, and security
problems due to /tmp races. The variable HOME, which points to the user’s home
directory, is set to the meaningless value /homeless-shelter. Many programs look
up the home directory corresponding to the current user ID in /etc/passwd or similar
if HOME is not set. Setting HOME prevents such lookups and reduces the possibil-
ity of interference from tools that read configuration files from the home directory.
Likewise, PATH is set to the value /path-not-set, since the Unix shell initialises PATH
to an undesirable default such as /usr/local/bin:/bin:/usr/bin, which typically causes
interference. Finally, the variable NIX_STORE is set to storeDir. Some tools need
the location of the store for various purposes (see, e.g., Section 7.1.3).

80 If the build finishes successfully, the output is canonicalised by the function canon-
icalisePathContents. It sets all file system meta-information not represented in the
canonical serialisation to fixed values. In particular, it does the following:

– The “last modified” timestamps on files are set to 0 seconds in the Unix epoch,
meaning 1/1/1970 00:00:00 UTC.

– The permission on each file is set to octal 0444 or 0555, meaning that the file
is readable by everyone and writable by nobody, but possibly has execute per-
mission. Removing write permission prevents the path from being accidentally
modified when it is used as an input to other derivations.

– Special permissions, such as set-user-ID and set-group-ID [152], are removed.

– A fatal error is flagged if a file is found that is not a regular file, a directory, or
a symlink.

The actual implementation of canonicalisePathContents(p) is not shown here, but
in its effect is equal to deserialising a canonical serialisation of the path:

writePath(p, readPath(p))

where writePath takes care to create files with canonical values for meta-information
not represented in the canonical serialisation.

81 If d is a fixed-output derivation (Section 5.4.1), then we have to check that the output
produced by the builder matches the cryptographic hash declared in the derivation.
Recall that there are two modes of fixed-output derivation: flat mode that requires the
output to be single non-executable file, and recursive mode that applies to arbitrary
outputs. Flat mode hashes the plain file contents (read by the function readFile),
while recursive mode hashes the serialisation of the entire FSO.

82 Since the build has finished successfully, we must register the path as valid and set its
references mapping. This must be done in a database transaction to maintain the in-
variants. Thanks to the ACID properties of the underlying Berkeley DB database, it
is always safe to interrupt any Nix operation, and Nix can always recover gracefully
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scanForReferences(p, paths) :
c← serialise(readPath(p))
refs← /0
for each p′ ∈ paths :

if find(c, hashPart(p′)) 6= /0 :
refs ∪←{p′}

return refs

Figure 5.12.: scanForReferences: Scanning for store path references in build results

from non-corrupting crashes, including power failures. In the case of operating sys-
tem or hardware crashes, this requires the file system containing the Nix store to be
data-journaled [142], or to otherwise guarantee that once data has been committed
to disk, no rollback to previous contents will occur.

Following the stored hash invariant (page 96), the valid entry for the output path is
set to the SHA-256 of the serialisation of the path contents.

The references entry is set to the set of store paths referenced from the output con-
tents. As described in Chapter 3, the references are found by scanning for the hash
parts of the input paths. The set of input paths is the union of the closures of the
input sources 74 and the outputs of the input derivations 73 . Note that it is quite
possible for the output to contain a reference to a path that is not in inputSrcs or
inputDrvs, but that is in the closure of those paths. Such a reference can be obtained
by the builder indirectly by dereferencing one of its immediate inputs. Given the
full set of input paths, the function scanForReferences returns the set of referenced
paths.

The deriver mapping maintains a link from outputs to the derivations that built them.
It is described below.

Scanning for references The function scanForReferences, shown in Figure 5.12, de-
termines the references in a path p to other store paths.

We only need to scan for store paths that are inputs, i.e., that are in the closure of in-
putSrcs and the outputs of inputDrvs. It is not necessary to scan for references to arbitrary
store paths, since the only way that a builder can introduce a reference to a path not in the
input set, is if it were to read the Nix store to obtain arbitrary store paths. While it is easy
to construct a contrived builder that does this, builders do not do so in practice. Indeed,
if this were an issue, we could block such behaviour by making the Nix store unreadable
but traversable (i.e., by clearing read permission but enabling execute permission on the
directory on Unix systems).

Thus scanForReferences also takes a set of potentially referenced paths. It then searches
for the hash part of each path in the serialisation of the contents of the FSO at p. To re-
iterate from Section 3.4, we only care about the hash part because that’s the most easily
identifiable part of a store path, and least likely to be hidden in some way. The search for
the hash part is done using an ordinary string searching algorithm, denoted as find(s, t),
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which yields the integer offsets of the occurrences of the byte sequence t in the byte se-
quence s (an empty set indicating no matches). If and only if there is a match, we conclude
that path p has a reference to the store path p′.

For the string search, the Boyer-Moore algorithm [18] is particularly suited because the
hash parts consist of a small subset of the set of byte values, allowing the algorithm to
jump through the input quickly in many cases. For instance, if we encounter any byte not
in the set of base-32 characters (see digits32 in Section 5.1), we can immediately skip 32
characters. Especially for binary files this will happen quite often. Thus it is reasonable to
expect that the search achieves Boyer-Moore’s Θ(n/m) average running time in most cases
(where n is the length of the serialisation in bytes, and m is the length of the hash part).

If it is desirable to support encodings of the hash part other than plain ASCII (and to
date, it has not been necessary to do), scanForReferences can be adapted appropriately.
For instance, to detect UTF-16 encodings of the hash part, we should just scan for the byte
sequence s[0] 0 s[1] 0 s[2] 0 . . . s[31] 0, where s = hashPart(p′), p′ ∈ paths, and 0 denotes
a byte with value 08.

Traceability For many applications it is important to query which derivation built a given
store path (if any). Section 11.1 gives the example of blacklisting, which allows users to
determine whether the build graph of a component contains certain “bad” sources. In
Software Configuration Management, this is known as traceability—the ability to trace
derived artifacts back to the source artifacts from which they were constructed.

To enable traceability, Nix maintains a database table deriver : Path→ Path that maps
output paths built by derivations to those derivations. The following invariant maintains
traceability.

Invariant 5 (Traceability invariant). The deriver of a valid path p, if defined, must be a
valid store derivation with output path p.

∀p ∈ Path : (valid[p] 6= ε ∧deriver[p] 6= ε)→
(valid[deriver[p]] 6= ε ∧parseDrv(readPath(deriver[p])).output = p)

However, this invariant is actually optional in the current implementation, because not
all users want traceability. The disadvantage of full traceability is that the entire derivation
graph of each output path has to be kept in the store for the lifetime of those paths.

It is worth noting at this point that Nix in no way maintains a link between the build
graph (store derivations and sources) in the Nix store on the one hand, and the Nix expres-
sions from which they were instantiated on the other hand. If the latter are under version
management control, there is no way to trace store paths back to the artifacts in the version
management system from which they ultimately originated. This is most certainly a desir-
able feature, but it is not clear how such information can be maintained without coupling
Nix too closely to the version management system (as is the case in Vesta and ClearCase,
which integrate version management and build management, as discussed in Section 7.6).

8This assumes a little-endian encoding of UTF-16 (i.e., UTF-16LE) [34]. For the big-endian variant (UTF-
16BE), the 0s should prefix the hash characters.
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let {

pkgsLinux = ...;

pkgsDarwin = ...;

fooC = derivation {

name = "fooC";

system = "i686-linux";

src = ./foo.tar.gz;

builder = ...;

inherit (pkgsLinux) stdenv ... tiger;

};

fooBin = derivation {

name = "foo";

system = "powerpc-darwin";

src = fooC;

builder = ...;

inherit (pkgsDarwin) stdenv ...;

};

body = fooBin;

}

Figure 5.13.: Example of a distributed, two-platform build

5.5.2. Distributed builds

The build algorithm in Figure 5.11 builds derivations only for the current platform (thisSys-
tem). Through a relatively simple extension called build hooks, Nix supports distributed
multi-platform builds.

Figure 5.13 shows a hypothetical example of a Nix expression that requires a distributed
multi-platform capable build system. The scenario is that we want to compile a package
foo, written in a hypothetical language called Tiger, for Mac OS X (powerpc-darwin). Un-
fortunately, the Tiger compiler does not run on that platform, but it does run on Linux
(i686-linux) and can compile to C code. Thus, we have two derivations. The first derivation
compiles the foo package to C code on i686-linux, and produces an output consisting of C
source files. The second derivation compiles the C sources produced by the first derivation
to native PowerPC code on powerpc-darwin. With the build hook mechanism, we can just
build the second derivation on any machine normally, e.g.,

$ nix-env -f foo.nix -i foo

and any derivation that cannot be executed on the local machine is forwarded to a machine
of the appropriate type. In this way, build hooks allow us to abstract over multi-platform
builds. It is not necessary for the user to interact explicitly with the various machines
involved in the build. In Section 9.4 we will see a powerful application of this: building
distributed multi-platform services.

Build hooks are useful not just for multi-platform builds, but also to accelerate large
single-platform builds. For instance, Nixpkgs contains hundreds of components that need
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to be built for i686-linux, and many of those derivations can be scheduled in parallel since
they do not depend on each other. The build hook mechanism allows as many derivations
as possible to run in parallel on the available hardware of that type.

A build hook is a user-defined program (typically written in a scripting language like
Perl) that is called by Nix to perform the build on behalf of Nix. The build hook mechanism
is policy-free, that is, it can do anything it wants, but a build hook typically does the
following things:

• It determines whether it knows a remote machine of the appropriate platform type
that can handle the derivation. If not, it refuses the job, and the calling Nix pro-
cess executes the job normally, which is to say that it runs the builder if thisSystem
matches d.system, and aborts otherwise.

• If an appropriate machine is known, the hook can either accept the job or tell the
calling Nix process to postpone the job. The latter is appropriate if the load on the
selected machine is too high: it is typical to allow no more jobs to run concurrently
on a machine than the number of CPUs. If the hook returns a “postpone” reply,
the calling Nix process will wait for a while, or continue with some other derivation
(this is not supported by the algorithm in Figure 5.11, but is supported by the parallel
algorithm in Section 5.5.4).

• If the hook has accepted the job, the calling Nix process will create a temporary
directory containing all information that the hook needs to perform the build, such
as the store paths of the inputs and output.

• The hook copies the FSOs denoted by the input paths (the inputs set computed in
Figure 5.11) to the Nix store on the target machine, and registers them as valid with
the appropriate reference graph mappings. It is important that the Nix stores on both
machines are in the same location in the file system. The derivation itself (at pdrv) is
also copied.

• The hook builds the derivation on the remote machine, e.g., by using the Secure
Shell (ssh) protocol [61] to run nix-store --realise remotely.

• If the remote build succeeds, the output at d.output in the Nix store of the remote
machine is copied back to the local Nix store.

When the hook finishes successfully, Nix proceeds normally as if it had executed the
builder itself, i.e., by scanning for references in the output and registering path validity.

As stated above, this is a policy-free mechanism: it doesn’t care how the build hook
does its work. In general, the build hook will have some configuration file listing remote
machines, authentication information to automatically log in to those machine, and so on.
An example of a concrete build hook is given in the context of build farms in Section 8.3.

Hook protocol A build hook is enabled by the user by pointing the environment variable
NIX_BUILD_HOOK at the hook. When Nix needs to perform a build, it first executes
the hook to discover whether it is able and willing to perform the build. Thus the build
algorithm in Figure 5.11 is augmented as shown in Figure 5.14. Nix calls the hook 84 with
all information that the hook needs to determine whether it can handle the job, namely:
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build(pdrv) :
(...elided...)
if the environment variable NIX_BUILD_HOOK is defined :

ptmp← createTempDir()
Write inputs ∪ closure(pdrv) to file ptmp/inputs
Write d.output to file ptmp/outputs
Write the references of inputs to file ptmp/references
(fdread , fdwrite)← pipe() 83
Asynchronously start NIX_BUILD_HOOK in directory ptmp

with fdwrite attached to file descriptor 3
and arguments [0, thisSystem,d.system, pdrv] 84

reply← read a line from fdread
if reply = "accept" then :

Wait until the hook finishes
if the hook exited with exit code 6= 0 : abort
Scan and register the path as valid, as in Figure 5.11
return

else if reply = "postpone" then :
Sleep a bit, then retry; see Section 5.5.4 for a better implementation.

else if reply 6= "decline" then : abort
Fall through to normal handling...

if d.system 6= thisSystem : abort
(...elided...)

Figure 5.14.: Augmentation of build in Figure 5.11 to add support for build hooks

• A Boolean value signifying whether the calling Nix process can execute more build
jobs right now. This is applicable to the parallel build algorithm shown in Sec-
tion 5.5.4 below, where Nix can execute a user-defined number of jobs in parallel.

• The value of thisSystem.

• The value of d.system. The hook needs this to determine whether it knows a remote
machine of the appropriate type.

• The store path of the derivation (pdrv).

In addition, Nix creates a temporary directory containing the following files:

• inputs contains the store paths of all inputs, along with the closure of the store deriva-
tion itself.

• outputs contains the store path of the output. It is outputs, plural, to support multiple
output paths as described in Section 6.7.

• references contains a textual representation of the references mapping of the inputs.
After copying the inputs to the target Nix store, the command nix-store --register-
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validity is used to register the validity of the copied paths on the target machine. This
command accepts a description of the references graph in exactly this format.

A Unix pipe is created to communicate with the hook 83 . Its write side is attached to
file descriptor 3 in the hook child process. The hook should print one the following strings
on file descriptor 3 (followed by a linefeed character):

• postpone indicates that the caller should wait, typically until another job has termi-
nated, hopefully decreasing the load on the intended target machine(s).

• decline means that the caller should try to build the derivation itself.

• accept means that the hook has accepted the build job.

If the hook accepts the job, it is responsible for producing output in d.output. If it
finishes successfully, the output path is registered as valid, with the references determined
by scanForReferences, just as in Figure 5.11.

5.5.3. Substitutes

Substitutes are the mechanism by which Nix enables its transparent source/binary deploy-
ment paradigm, as we saw in Section 2.6. A substitute is an invocation of some arbitrary
program that creates a store object through some other means than normal building. It is
primarily used to obtain the output of a derivation by downloading a pre-built FSO from a
server rather than building the derivation from source.

The database mapping substitutes : Path→{(Path, [String],Path)} stores the substitutes
that have been registered by user commands. The left-hand side is the store path to which
the substitutes apply. The right-hand side is a set of substitutes. Each substitute is a
three-tuple (substituter,args,deriver), where substituter is the path of the program to be
executed to perform the substitution, args are the command-line arguments to be passed
to that program, and deriver is the store path of the derivation that produced the FSO on
the originating machine. The latter is necessary to maintain the deriver link for traceability
(on installations where this is enabled). An example entry in the substitutes mapping is:

substitutes["/nix/store/bwacc7a5c5n3...-hello-2.1.1"] = {
( "download-url.sh"
, ["http://example.org/1pc7y48cs3qn....nar.bz2"]
, "/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv"
)

}

which establishes a single substitute: if we want to make path /nix/store/bwacc7a5c5n3...-
hello-2.1.1 valid, we can do so by executing the program download-url.sh with argument
http://example.org/1pc7y48cs3qn....nar.bz2. Here download-url.sh is presumably a pro-
gram that downloads a file from the given URL, and uncompresses and unpacks it to store
path /nix/store/bwacc7a5c5n3...-hello-2.1.1.

This is another example of a policy-free mechanism: Nix does not care how the sub-
stitute produces the store object. It can download from a server, interactively prompt the
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user to insert an installation CD, and so on. Indeed, there is no guarantee that a substitute
produces correct output, which is a problem for secure deployment. The intensional model
discussed in Chapter 6 addresses this issue. Section 7.3 discusses the implementation of a
concrete binary deployment scheme based on the substitute mechanism.

The FSOs that we obtain through substitutes typically have references, of course. For
instance, the Hello binary in /nix/store/bwacc7a5c5n3...-hello-2.1.1 has a reference to
/nix/store/72by2iw5wd8i...-glibc-2.3.5. To maintain the closure invariant, we must ensure
that the latter path is valid before we download the former. Thus, the references mapping
for a path must be known beforehand. This means that when a substitute is registered,
the references for the path in question must also be registered. Formally, this gives us the
following invariant.

Invariant 6 (Reference invariant). A path that is valid or substitutable is called a usable
path. For all usable paths, the set of references must be known:

∀p ∈ Path : (valid[p] 6= ε ∨ substitutes[p] 6= ε)→ references[p] 6= ε

Note that the references entry for a valid or substitutable path can be the empty set ( /0),
it just cannot be undefined (ε).

The command nix-store --register-substitutes registers a set of substitutes, along with the
references of the paths to which the substitutes apply. This command is used by concrete
deployment policies such as nix-pull (Section 2.6). For example:

$ nix-store --register-substitutes

/nix/store/bwacc7a5c5n3...-hello-2.1.1

/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

download-url.sh

1

http://example.org/1pc7y48cs3qn....nar.bz2

3

/nix/store/72by2iw5wd8i...-glibc-2.3.5

/nix/store/bwacc7a5c5n3...-hello-2.1.1

/nix/store/q2pw1vn87327...-gcc-3.4.4

Here a substitute is registered for the path /nix/store/bwacc7a5c5n3...-hello-2.1.1 that takes
one argument and has three references. The substitute specification on standard input lists
the store path being substituted, its deriver (if any), the substituter program, the command-
line arguments, and the references. The latter two are listed one per line, each list preceded
by a line specifying its length.

The function substitute(p) that tries to make a usable path p valid through substitutes is
shown in Figure 5.15. It returns a Boolean indicating whether it succeeded in making p
valid. If the path is already valid, we are done right away 85 . Likewise, if the path is not
valid but there are no substitutes, we are also done, in a negative sense 86 .

Otherwise, the path is not valid but we do have substitutes, so we can hopefully build the
path using one of them. However, to maintain the closure invariant, we must first ensure
that all the paths that will be referenced by p are also valid. By the reference invariant, we
already know the references of p. Thus, we call substitute recursively on all references 87 .

To prevent interference with potential other Nix processes while running the substitutes,
a lock is first acquired on the output path 88 . As in the build algorithm in Figure 5.11, it
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Bool substitute(p) :
if valid[p] 6= ε : return true 85
if substitutes[p] = ε : return false 86
for each p′ ∈ references[p] :

if ¬ substitute(p′) : return false 87

lock← acquirePathLock(p) 88
if valid[p] 6= ε : return true
for each (program,args,deriver) ∈ substitutes[p] : 89

if pathExists(p) : deletePath(p)
if execution of program program with

arguments [p]+args exits with exit code 0 : 90
assert(pathExists(p))
canonicalisePathContents(d.output) 91
valid[p]← hashsha256(serialise(readPath(p))) 92
deriver[p]← deriver
releasePathLock(p, lock)
return true

releasePathLock(p, lock)
if fall-back is disabled : abort 93
return false

Figure 5.15.: substitute: Substitution of store paths

is possible that the output path has become valid between the initial validity check and the
acquisition of the lock. Thus, a final validity check is done.

Next, we try each substitute until one succeeds 89 . The substitute program is called
with as command-line arguments the target path p, and the arguments registered for the
substitute 90 . The substitute program is supposed to produce an FSO at path p and return
exit code 0. If so, the path’s metadata is canonicalised 91 , the path is registered as valid,
and the deriver is set 92 . If not, the next substitute is tried until no more substitutes remain.

Generally, it is a fatal error if all substitutes for a path fail. When substitute is called
from a derivation build action, Nix does not automatically “fall back” to building from
source 93 . The reason is that we presumably registered the substitute for a reason, namely,
to avoid the overhead of a source build. If the substitute fails for a transient reason—such
as a network outage—the user in general does not want a source build instead, but prefers
to wait or repair the cause of the problem. However, Nix commands do accept a flag to
enable automatic fall-back:

$ nix-env -i hello --fall-back

...

downloading `/nix/store/bwacc7a5c5n3...-hello-2.1.1'

from http://example.org/foo

curl: `example.org': no route to host

falling back...

building `/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv'
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...

Relation to build hooks So what is the difference between a substitute and a build hook,
as they both short-circuit the build process? A build hook is used to “out-source” the
building of a derivation, while a substitute is used to reproduce an already existing build
result. That is, build hooks operate at build time, while substitutes operate at deployment
time. Specifically, the substitution of the output of a derivation only needs the references
of the output (i.e., runtime dependencies) to be valid, while a build hook requires that all
inputs of the derivation (i.e., build-time dependencies) are valid.

For example, the GNU Hello derivation has build-time dependencies on GCC and sev-
eral other packages, but these are not referenced from the output. Thus, if we use a sub-
stitute to download a Hello binary, dependencies such as GCC will not be installed. But if
we used build hooks, Nix would first install them. So while the substitutes can in principle
be subsumed by build hooks, substitutes are much more efficient for deployment purposes
(apart from the fact that making the build-time dependencies available may simply be un-
acceptable in many cases, such as closed-source deployment).

Also, substitutes allow us to forego store derivations altogether. For instance, nix-env
can install output paths directly:

$ nix-env -i /nix/store/bwacc7a5c5n3...-hello-2.1.1

This command will make /nix/store/bwacc7a5c5n3...-hello-2.1.1 valid using a substitute (if
it wasn’t already valid). The difference with installing from a store derivation is that this
mode of installation cannot fall back to a build from source if the substitutes fail.

5.5.4. The parallel build algorithm

The build algorithm described above does not always make optimal use of the available
hardware. When multiple CPUs are available, it is a good idea to execute multiple deriva-
tions in parallel. When substitutes are used, it may well be the case that each substitute
only uses a fraction of the available download bandwidth, i.e., executing multiple down-
loads in parallel might speed things up. More importantly, when build hooks are used to
distribute build jobs to remote machines, we certainly shouldn’t wait for one job to finish
when there are idle machines.

This section briefly describes a parallel build algorithm that can execute multiple builds
and substitutions simultaneously. The parallel algorithm, rather than the one described
above, is what is implemented in the current Nix implementation.

The parallel build algorithm works on sets of goals. There are two types of goals:

• A derivation goal attempts to make the output of a derivation valid.

• A substitution goal attempts to make a path valid through substitutes.

Each type of goal is implemented by a finite state machine. The nodes of the finite state
machine represent states. Each state has associated with it an action that is to be performed
when the state is reached. Typically, the action is to start other goals or processes. The goal
is then “put to sleep” until the condition associated with one of the out-going edges of the
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run(topGoals) :
awake← topGoals
while true :

for each goal ∈ awake :
Remove goal from awake
Execute the action associated with the current state of goal
if goal has reached a final state :

Add goals waiting on goal to awake
Remove goal from topGoals

if topGoals = /0 : return
Wait for termination of child processes, add corresponding goals to awake

Figure 5.16.: run: Goal execution (sketch)

state becomes true. At this point, the goal is woken up, the transition to the corresponding
new state is made, and the action associated with the new state is performed. This continues
until the goal reaches a final state.

There is a top-level function run that executes a set of initial top-level goals (all being
in their initial state). It is shown in Figure 5.16. It maintains a set of “awake” goals,
e.g., those goals that have made a transition (meaning that some event has occured that is
relevant to the goal). Initially, the top-level goals are all awake, so their initial actions can
be executed. If a top-level goal finishes, it is removed from the set of top-level goals, and
the runner continues until there are no more top-level goals.

The “events” that can wake up a goal are the termination of a child process (i.e., a
builder, a substituter, or a build hook), or the termination of a subgoal. A subgoal of a goal
g is a goal that g is waiting on. Subgoals can be shared. Suppose that we start the parallel
building of top-level derivations Hello and Firefox, which both depend on the same Glibc.
One top-level derivation will create a subgoal for Glibc and its other input derivations. It
then goes to sleep, waiting for the subgoals to finish. When the Firefox goal is executed, it
will see that a subgoal for Glibc already exists, and simply add itself to the list of “waiters”.
When the Glibc goal finishes, it will wake up both the Hello and Firefox goals, allowing
them to make progress (as soon as their other subgoals have finished too, that is).

Figure 5.17 shows the state machine for derivation goals. When a goal starts, it
creates a substitution subgoal for its derivation store path (which corresponds to the
call substitute(pdrv) in the simple build algorithm in Figure 5.11). If the subgoal suc-
ceeds, it starts a substitution subgoal for the output path (corresponding to the call
substitute(d.output)). If that subgoal does not succeed, we have to perform the build. So
first the input derivations must be built, and thus derivation subgoals are created for each
of those (corresponding to the recursive calls to build). If each is successful, we can run the
build hook, or if that yields a decline response, the builder. We limit however the number
of child processes that can run in parallel9. If this limit is reached, no more child processes
can be started until one finishes (the available “build slots” are said to be exhausted), so the
goal goes to sleep. When the hook or builder finishes successfully, the usual postprocess-

9This limit can be specified using the --max-jobs N flag.
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INIT

start substitution goal for store derivation

FAILED

substitution goal failed

HAVE STORE DERIVATION

start substitution goal for output path

substitution goal succeeded

SUCCESS

substitution goal succeeded

NO OUTPUT

start derivation goals for all input derivations

substitution goal failed

one or more subgoals failed

TRY TO BUILD

run the build hook / builder

all subgoals succeeded

hook or builder failed

hook declined/postponed, or no build slot;

wait until a child finishes

FINISHED

check output, scan, register

hook or builder succeeded

no output success

Figure 5.17.: State machine for derivation goals

INIT

SUCCESS

path is already valid

INVALID

start substitution goals for all references

path is not yet valid

FAILED

one or more subgoals failed
TRY NEXT

pop next substitute

all subgoals succeeded

no more substitutes

TRY TO BUILD

run the substitute program

have a substitute

substitute succeeded

substitute failed

no build slot;

wait until a child finishes

Figure 5.18.: State machine for substitution goals
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ing is performed: the references are determined, the content hash of the path is computed,
and the path is registered as valid. (The transitions from state FINISHED are not actual
events, but simply the outcomes of the action associated with that state’s action.)

Figure 5.18 shows the state machine for substitution goals. A substitution goal first
checks that the path is not already valid (again, the edges from INIT are not actual events).
If it is invalid, subgoals are started to make the references of the path valid. Then, each
substitute is tried until one succeeds.

Normally, when a subgoal fails, its waitees (the goals waiting on it) are immediately
woken up and fail as well (except when failure is normal, e.g., in the substitution of an
output path). These waitees may have other subgoals that are still busy. Each goal has a
reference count, and when the waitees kill themselves, they decrement the reference counts
of all remaining subgoals. If the reference count of a goal reaches 0, it is also killed.
Associated child processes are terminated. Thus, failure of a single subgoal propagates
upwards, killing all other goals along the way.

This is usually the desired behaviour, but not always. For instance, in the Nix build farm
described in Chapter 8, the job for Nixpkgs contains hundreds of more-or-less independent
derivations. The failure of one should not terminate the others, since the build results of
the successful derivations can be reused in subsequent build jobs. For this reason, there
is a flag --keep-going that has the following effect: when a subgoal fails, the waitees are
not woken up until all their other subgoals have finished as well. At that point, the waitees
notice the subgoal failure, and make the transition to the FAILED state as well10.

5.6. Garbage collection

Nix never deletes components from the Nix store on uninstallation or upgrade actions.
Rather, to reclaim disk space, it is necessary to routinely run a garbage collector.

Garbage collection in Nix is pretty much like garbage collection in programming lan-
guages (except for one unique property discussed below). There is a pointer graph defined
by the references relation, and there is a set of roots. The closure of the set of roots under
the references relation is the set of live store objects—these are FSOs that are potentially
in use, and therefore must not be deleted. All store objects that are not live are dead—these
can be deleted safely.

The garbage collector therefore has the following phases:

• Determine the set of root paths.

• Compute the live paths as the closure of the set of root paths.

• Delete the dead paths, which are those that exist in the Nix store but are not in the
set of live paths.

This section first discusses how root paths are registered. Then it shows two garbage
collection algorithms: a plain “stop-the-world” collector that blocks all other Nix actions
while it is running, and a concurrent collector that can run in parallel with other Nix actions.

10This behaviour is similar to GNU Make’s [68] -k flag.
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5.6.1. Garbage collection roots

The set of roots of the garbage collector are defined as symlinks to store paths in the
directory /nix/var/nix/gcroots. Conceptually, if we for example have a store path /nix/store/-
bwacc7a5c5n3...-hello-2.1.1 that we want to be preserved, we can register it as a root as
follows:

$ nix-store -r $(nix-instantiate foo.nix)

/nix/store/bwacc7a5c5n3...-hello-2.1.1

$ ln -s /nix/store/bwacc7a5c5n3...-hello-2.1.1 \

/nix/var/nix/gcroots/my-root

It is also possible to register store derivations as roots, e.g.,

$ nix-instantiate foo.nix

/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

$ ln -s /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv \

/nix/var/nix/gcroots/my-root

This causes the store derivations and its dependencies—other store derivations and
sources—to be preserved by the collector.

However, there is a race condition in this method of root registration. If the garbage
collector is ran just between the call to nix-store or nix-instantiate on the one hand, and the
creation of the symlink on the other hand, the store object and some or all of its dependen-
cies may be garbage collected. It is therefore possible to let the Nix tool in question create
the root:

$ nix-instantiate --add-root /nix/var/nix/gcroots/my-root foo.nix

/nix/var/nix/gcroots/my-root

Through locking, Nix ensures that there is no race condition.
Having to store links in /nix/var/nix/gcroots is often inconvenient. Consider the Nix

utility nix-build that instantiates and builds a Nix expression, and leaves a symlink result
pointing to the output path of the derivation in the current directory:

$ nix-build ./foo.nix

$ ls -l result

lrwxr-xr-x ... result -> /nix/store/bwacc7a5c5n3...-hello-2.1.1

$ ./result/bin/hello

Hello, world!

We want to implement nix-build so that its result is registered as a root. One way to do this
is to have nix-build generate a fresh symlink in /nix/var/nix/gcroots, and have ./result be a
symlink to that. I.e., we solve the problem through an extra indirection. However, there is
a problem: if we delete ./result, the root persists. So the user would always need to make
sure to delete the target of the result symlink when deleting result.
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A better solution is the notion of indirect roots, which is in a sense the opposite solution.
We let ./result be a direct symlink to the store path, and create a symlink to result in the
designated directory /nix/var/nix/gcroots/auto. For example,

$ nix-store -r --add-root ./my-root --indirect \

$(nix-instantiate foo.nix)

./my-root

$ ls -l my-root

lrwxr-xr-x ... result -> /nix/store/bwacc7a5c5n3...-hello-2.1.1

$ ls -l /nix/var/nix/gcroots/auto

lrwxr-xr-x ... 096hqdxcf6i2... -> /home/eelco/test/my-root

$ ./my-root/bin/hello

Hello, world!

The name of the symlink in auto is a cryptographic hash of the root location (e.g., /home/-
eelco/test/my-root). This ensures that subsequent root registrations with the same location
will overwrite each other (which is good, since it minimises the number of redundant
symlinks in auto).

When the garbage collector runs, it chases the symlinks defined in /nix/var/nix/gcroots/-
auto. If it encounters a dangling symlink (i.e., pointing to a non-existent path), the root
pointer is automatically deleted. Thus, when result is removed, the root in the auto direc-
tory will be removed as well on the next run of the garbage collector.

Figure 5.19 shows the algorithm for finding the garbage collector roots. It returns a set
of store paths. The closure of this set under the references relation is the set of live paths.

By default there is a symlink in /nix/var/nix/gcroots to the directory /nix/var/nix/profiles/
that contains the user environment generation links. Thus all user environment generations
are roots of the garbage collector.

Discussion Why don’t we scan the entire file system outside of the Nix store for roots?
This is certainly possible, but I have opted for a more disciplined root registration protocol
instead for performance reasons—scanning the entire file system might take too long. Just
scanning for symlink targets is not overly expensive, since it is easy to recognise symlinks
that point to the Nix store. However, to be fully general we should also scan the contents
of regular files, just as we do with the output of a build. Since we do not know anything
about the internal structure of those files, we have to apply scanForReferences to the entire
file system with paths set to all current store paths. Since there can be many store paths—
millions in large installations—this becomes prohibitively expensive.

A possible extension to root discovery is to automatically use open store files as roots.
In the scheme described above, it is possible that a currently executing program is garbage
collected. For instance, the command sequence

$ nix-env -i firefox

$ firefox & # start Firefox in the background

$ nix-env -e firefox

$ nix-env --remove-generations old

$ nix-store --gc
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findRoots() :
return findRoots′("/nix/var/nix/gcroots", false)

findRoots′(p, recurseSymlinks) :
if p is a directory :

roots← /0
for each directory entry n in p :

roots ∪← findRoots′(p+ "/"+n, recurseSymlinks)
return roots

else if p is a symlink :
target← targetOf(p)
if target is a store path :

return {p}
else : // target is not a store path

if recurseSymlinks :
if pathExists(target) :

return findRoots′(target, false)
else :

deletePath(p)

Figure 5.19.: findRoots: Root discovery

will cause Firefox to be (probably) garbage collected, even though it is still running.
There is no portable method to discover the set of open files, but on most operating

systems there are methods to do so. For instance, on Linux the open files are the targets of
the symlinks /proc/*/fd/*11.

A more extreme approach is to scan for roots in memory. On Linux, the device /dev/mem
provides access to the system’s physical memory. This has the same efficiency problem
as scanning in regular files: since we do not know anything about the internal structure
of the memory contents, we have to scan for hash parts. Furthermore, since /dev/mem
maps the physical address space, hashes may be fragmented in memory if they cross page
boundaries; i.e., if character n of a hash is stored at address m, then character n+1 need not
necessarily be at address m+1. The scanner may fail to detect references if this happens.
So memory scanning only works well for memory devices that map virtual address spaces,
e.g., /proc/*/mem.

5.6.2. Live paths

The live store paths are those that are reachable from the roots through the references
relation. However, it is useful to extend the notion of reachability a bit. For instance,
for some users it is desirable to keep the build-time dependencies of a component: if a
user (e.g., a developer) often builds components from source, it is nice if a build-time

11On Linux, the /proc directory contains subdirectories for each live process containing information about them,
e.g., /proc/7231, each having a subdirectory fd that holds symlinks to the open files of the process.
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dependency like the compiler is retained by the garbage collector.
As another example, consider the traceability afforded by the deriver mapping, which

tells us which derivation built a path. Some techniques, such as the blacklisting approach
described in Section 11.1 to enforce upgrades of insecure or otherwise “bad” components,
rely (in part) on knowledge of the build-time dependency graph.

For this reason, the Nix garbage collector has two options that can be set by the admin-
istrator of a Nix installation. They both extend the notion of liveness. The options are
defined in the /nix/etc/nix/nix.conf.

• gc-keep-outputs: If true, the garbage collector will keep the outputs of non-
garbage derivations. That is, if derivation p is live, then its output path
parseDrv(readPath(pdrv)).output is also live (if it is valid). If false (which is the
default), derivation outputs are not followed, so they will be deleted unless they are
roots themselves (or reachable from other roots).

Note that this is stronger than registering the output of a derivation as a separate root,
since it is transitive. That is, it keeps not just the output of the top-level derivation,
but also the outputs of all its subderivations. For instance, if we registered the Hello
derivation /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv as a root, then not only would
the Hello output /nix/store/bwacc7a5c5n3...-hello-2.1.1 be kept (if valid), but also the
source distribution downloaded by fetchurl, the C compiler, and so on.

• gc-keep-derivations: If true (the default), the garbage collector will keep the deriva-
tions from which non-garbage store paths were built. That is, if store path p is live,
then its deriver deriver[p] is also live (if defined and valid).

Thus, the first option causes liveness to flow from derivations to outputs, while the sec-
ond causes liveness to flow from outputs to derivations. Typically, developers turn both
options on to ensure that all build-time dependencies are kept, even when only the outputs
are registered as roots.

Figure 5.20 shows the computation of the set of live paths from the set of roots. It
performs a simple traversal through the graph of store paths with edges defined by the
union of the references relation, and the deriver and output links.

5.6.3. Stop-the-world garbage collection

After we have computed the live paths, we can garbage-collect by deleting all paths that
are not live. However, life is not quite so simple:

• Some non-live paths are actually about to be “born”, i.e., they are currently being
built by some derivation.

• Paths that are garbage at the beginning of the collection might be “resurrected”.
This is a big difference with garbage collection in general [179]. In programming
language implementations, garbage memory objects can never become live again
because there are no pointers to them, and pointers are only created through allo-
cation from the free space. Here, pointers (paths) are computed deterministically,
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livePaths(roots) :
todo← roots
done← /0
while todo 6= /0

p← remove one path from todo
if p 6∈ done :

done ∪←{p}
todo ∪← closure(p)
if gc-keep-outputs = true ∧ p ends in ".drv" :

d← parseDrv(readPath(p))
if valid[d.output] 6= ε :

todo ∪←{d.output}
if gc-keep-derivations = true ∧ deriver[p] 6= ε ∧ valid[deriver[p]] 6= ε :

todo ∪←{deriver[p]}
return done

Figure 5.20.: livePaths: Computing the set of live paths

so they can be recreated. For example, suppose that the Hello output /nix/store/-
bwacc7a5c5n3...-hello-2.1.1 is dead at the start of the collection run. During the
collection, a user may run nix-env -i hello and so make it reachable and live again.

The simplest solution by far is to use “stop-the-world” garbage collection, which means
that there are no other Nix operations while the collector is running. A stop-the-world
collector is shown in pseudo-code in Figure 5.21.

Stop-the-world semantics is implemented by using a global lock. All normal Nix pro-
cesses acquire a read (shared) lock when they start, and release it when they terminate12.
The garbage collector, on the other hand, acquires a write (exclusive) lock on startup 94 .
Thus the collector can only proceed when there are no other processes modifying the store
or the database. While the collector is running, new processes block until the collector
finishes.

The collector then finds the roots and computes the set of live paths. Next, it finds the
set of dead paths by reading the entries in the Nix store and tossing out those that are in
the live set 95 . The dead paths should then be deleted. However, they cannot be deleted
in arbitrary order, since that violates the closure invariant. This does not matter if the
collector runs to completion, since at that time the closure invariant holds again. But if the
collector is interrupted prematurely, we can have a store that violates the closure invariant.
Consider a store with the Hello output and one of its dependencies, Glibc. Suppose that
both are dead and about to be deleted. The collector deletes Glibc but is interrupted before
it can delete Hello. Then Hello is still valid, and so if the user were to run nix-env -i hello,
an incomplete Hello is installed into the user environment. (Note that the build algorithm

12This is not shown here, but such a lock is acquired in POSIX using the system call fcntl(fd,F_SETLKW, ...) and
passing a lock type F_RDLCK. In contrast, the exclusive lock acquired by acquirePathLock in Figure 5.4 uses
F_WRLCK.
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gc() :
lock← acquirePathLock("/nix/var/nix/global") 94
roots← findRoots()
live← livePaths(roots)
dead← /0
for each directory entry n in the Nix store (storeDir) :

p← storeDir+ "/"+n
if p 6∈ live : 95

dead ∪←{p}
dead′← topological sort of dead under the references relation

such that p < q if q ∈ references[p] 96
for each p ∈ dead′ (in topologically sorted order) :

invalidatePath(p)
deletePath(p)

releasePathLock("/nix/var/nix/global", lock)

invalidatePath(p) :
In a database transaction: 97

valid[p]← ε

for each p′ ∈ references[p] :
referers[p′]← referers[p′]−{p}

references[p]← ε

deriver[p]← ε

Figure 5.21.: Stop-the-world garbage collector

through substitute in Figure 5.15 only checks the validity of the top-level path, and not
its references, since the closure invariant makes such a check redundant. So it is actually
difficult to recover from an inconsistent store; we cannot just rebuild all derivations.)

To prevent this, we need to make sure that a path is deleted before its references are
deleted. That is, if p refers to q, then p must be deleted before q. This defines a partial
ordering on the set of dead paths. A correct ordering on the set of dead paths that preserves
the closure invariant can therefore be found by topologically sorting the dead paths under
the relation <, where p < q if q ∈ references[p] 96 .

Before each store object is deleted, its metadata in the database should be cleared, which
is done by the function invalidatePath 97 . The cleanup must be done in a transaction to
maintain database integrity. It must also be done before path deletion to maintain the
validity invariant (Invariant 1).

It is easy to see that the collector in Figure 5.21 maintains the closure invariant.

Lemma 3 (No cycles in references graph). The references graph contains no non-trivial
cycles. A cycle is trivial if it is a self-reference, i.e., p ∈ references[p].

Proof. This property follows trivially from the fact that a path’s references must exist prior
to the creation of the path (since the references, determined by scanForReferences, are a
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subset of the inputs in Figure 5.11). A cycle means that there must exist a path p1 that
references a path p2 that did not exist at the time p1 was created.

Theorem 4 (GC correctness). The garbage collector in Figure 5.21 maintains the closure
invariant at all times.

Proof. Assume that the invariant holds at the start of the garbage collector run. By con-
tradiction, assume that the invariant is then violated at some point. This means that there
exists a valid path p and an invalid path q, such that q ∈ references[p]. However, then
p < q under the ordering defined above, and since by Lemma 3 there are no cycles in the
references graph, p < q implies ¬(q < p). This means that p must have been deleted and
made invalid before q. Thus p is both valid and invalid, a contradiction.

5.6.4. Concurrent garbage collection

Stop-the-world garbage collection, while simple to implement, has very bad latency. While
the collector runs, no other Nix processes can start (that is, they block until the collector
finishes). This is unacceptable, since the collector might run for a very long time. For
instance, in our Nix-based build farm (Chapter 8), where we run the collector once every
few months, it can take a few hours to delete some 100 gigabytes of garbage.

Worse, there is a liveness issue: the collector might never start. If there always is a
process holding a read lock, then the collector cannot acquire a write lock. Of course,
any such process should terminate eventually, but by that time another process may have
acquired a read lock as well. In a build farm or a Nix store with a similarly high utilisation,
there might never be a point in time in which there is no process holding a read lock. If
locks are strongly fair [3], this is not a problem: the kernel will just block further attempts
to acquire a read lock while the garbage collector is waiting for a write lock. However, this
is not the case in general13.

Therefore we need a concurrent garbage collector—one that can run even as other Nix
operations are executing. This section shows first a partially concurrent collector that ad-
dresses the liveness issue, i.e., that can run in parallel with already existing Nix processes.
In particular, builds that are in progress (and that might take a long time to finish) do not
prevent the collector from starting. We can then improve the latency problem by making
this collector run incrementally.

The main issues to consider are the following:

• Some paths may be in use but may not yet be reachable from a root, e.g., during a
build done by nix-env.

• New roots may be created while the collector is running. Paths reachable from those
roots should not be deleted.

The solution to the first problem is to have running processes write a log of all store paths
that they are about to access or create to a log file, which is read by the collector. Such a log
file is per-process, e.g., /nix/var/nix/temproots/15726, where 15726 is the Unix process ID.
The store paths in those files are called temporary roots. Function addTempRoot, shown in

13For instance, strong fairness is not specified for POSIX’s fcntl operations.
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addTempRoot(p) :
if this is the first call to addTempRoot in this process :

do :
Acquire a read lock on "/nix/var/nix/gc" 98
fd← open("/nix/var/nix/temproots/"+pid,

O_WRONLY|O_CREAT|O_TRUNC, 0666) 99
Release the read lock on "/nix/var/nix/gc"
Acquire a read lock on fd

while file fd is not empty 100
Upgrade the read lock on fd to a write lock 101
Write p to fd
Downgrade the write lock on fd to a read lock

Figure 5.22.: addTempRoot: Registering a temporary garbage collection root

Figure 5.22, shows how a process registers a store path p as a temporary root. The idea is
that to register a root, the process must acquire a write lock on its per-process log file 101 .
The garbage collector, shown below, will acquire a read lock on each per-process log file.
Thus, no process can proceed after the garbage collector has acquired a read lock on its log
file.

There is a mechanism in place to clean up stale log files in /nix/var/nix/temproots. When
the log file is first created 99 , a read lock is acquired to enable the collector to detect
whether the log file is stale. If the collector can acquire a write lock on a log file, then
apparently the corresponding process has died without removing its own log file, and thus
the collector can remove the log file. However, to prevent a race with file creation, i.e., the
collector removing a newly created log file before the process can acquire a lock on it, we
use deleteSignal (page 98) to signal and detect this condition 100 .

There are several instances where addTempRoot must be called:

• In addToStore (Figure 5.3), after the call to makePath and before the first valid-
ity check. This ensures that the results of Nix expression translation are kept until
process termination.

• In substitute (Figure 5.15), before the validity check. This ensures that the results of
builds are kept until process termination.

On the other hand, we don’t register the derivation path pdrv in build (Figure 5.11) as a tem-
porary root, even though pdrv is going to be accessed. The reasoning is that registering pdrv
is someone else’s responsibility. For instance, in an execution of nix-env, any derivation
path will have been registered in the same process by addToStore in the Nix expression
translation. Likewise, in a call to nix-store --realise, the user is responsible for registering
the argument as a root (e.g., by using nix-instantiate --add-root).

The second problem—new roots being created while the collector is running—is ad-
dressed by blocking the creation of new roots while the collector is running. To reg-
ister a permanent root, a process must first acquire a read lock on the global lock file
"/nix/var/nix/gc". The collector on the other hand acquires a write lock and holds it during
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gc() :
Acquire a write lock on "/nix/var/nix/gc" 102
roots← findRoots() 103
live← livePaths(roots)
temp← /0
for each log file l in "/nix/var/nix/temproots/" : 104

fd← open log file l
if we can acquire a write lock on fd :

deleteAndSignal(l, fd)
else :

Acquire a read lock on fd
temp ∪← the set of paths read from fd

live ∪←
⋃

p∈temp closure(p)
dead′← topological sort of dead under the references relation
for each p ∈ dead′ (in topologically sorted order) :

if p ends in ".lock" : 105
fdlock← open lock p
if we cannot acquire a write lock on fdlock : skip

invalidatePath(p)
deletePath(p)
if p ends in ".lock" : deleteAndSignal(p, fdlock)

Release the write lock on "/nix/var/nix/gc"

Figure 5.23.: Concurrent garbage collector

its execution. Since adding a lock takes a small, bounded amount of time, the collector
will quickly acquire the write lock14.

Figure 5.23 shows the concurrent garbage collector. It first acquires the global lock
"/nix/var/nix/gc" 102 . This prevents new permanent roots from being created. Thus, the
set of permanent roots determined in 103 cannot increase while the collector runs. It also
blocks new Nix processes since these acquire a read lock 98 .

It then reads the set of temporary roots from the per-process files in /nix/var/nix/-
temproots/ 104 . It acquires a read lock on each file, thus blocking the creation of new
temporary roots by the corresponding processes. Stale log files are removed here, as de-
scribed above.

After this, no new roots—permanent or temporary—can be created. The garbage col-
lector can therefore proceed normally. There are some boring details 105 regarding the
deletion of lock files, which we only want to delete if they are stale (left over from an in-
terrupted operation). Staleness is discovered by attempting to obtain a write lock (without
blocking). If this succeeds, then the lock is either stale, or a process just created it but has
not acquired a lock on it yet. The latter case is handled by writing a deletion token to it

14Strictly speaking, this is not strongly fair: it is in principle possible that there is always at least one process
holding a read lock. However, given the typical frequency of root creation and the time it takes to do so, this
is extremely unlikely to occur in practice.
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using deleteAndSignal. This token is detected by addTempRoot, which will restart upon
seeing it.

The correctness of the algorithm follows from the observation that no Nix process will
access any store path that is not in the live set, since all temporary roots are known to the
collector through the log files, and the creation of new temporary or permanent roots is
blocked.

The collector described here is still not perfectly concurrent: though it can run in parallel
with previously executing processes (in particular, with builders), it blocks new processes
and new temporary roots. Thus collector execution is strongly fair but still has bad latency.
However, this is easily fixed by making the collector incremental. The collector can simply
periodically restart until no more garbage exists (indeed, the user is free to interrupt the
collector if desirable). Restarting will release the locks, allowing waiting processes to
proceed. An even more concurrent scheme is one where processes inform the collector
of new temporary roots by writing them to a socket and waiting synchronously for an
acknowledgement from the collector.

5.7. Extensionality

So why do we call this model extensional? The reason is that we make an assumption of
extensional equality. Build operations in general are not pure: the contents that a builder
stores in the output path can depend on impure factors such as the system time. For in-
stance, linkers often store a timestamp inside the binary contents of libraries. Thus, each
build of a derivation can produce a subtly different output.

However, the model is that such impure influences, if they exist, do not matter in any
significant way. For instance, timestamps stored in files generally do not affect their opera-
tion. Hence extensional equality: two mathematical objects (such as software components)
are considered extensionally equal if they behave the same way for any operation on them.
That is, we do not care about their internal structure.

Thus, while any derivation can have a potentially infinite set of output path contents
that can be produced by an execution of its builder, we view the elements of that set as
interchangeable.

But this is a model—an assumption about builders. If a builder yields a completely
different component when invoked at a certain time of day, it is beyond the scope of the
model. In reality, also, we can always observe inequality by observing the internal encod-
ing of the component, since that is a permissible operation. But the model is that any such
observation does not take place or does not have an observable effect.
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The previous chapter discussed the extensional Nix store model. This model works very
well, but it has one substantial limitation (as well as a few smaller ones): it does not allow
sharing of a Nix store between arbitrary users. If we allow just anyone with an account on
the system to run arbitrary Nix operations, we run into serious security problems:

• A user could modify the Nix store directly and inject a Trojan horse (a malicious
component masquerading as legitimate software) into a component used by other
users, allowing their accounts to be compromised when they execute the component.

• Even if direct access to the store were restricted, i.e., if all builds were performed by
a system process on behalf of other users, it is still possible for users to “crack” the
Nix store by starting a build that interferes with the builds of other users.

• And even if that were not possible, the substitute mechanism is dangerous in that we
must trust that an FSO obtained through a substitute is actually a real build result of
the derivation from which it is claimed to have been built.

This chapter shows a different model for the Nix store, called the intensional model, that
allows these problems to be solved. The basic idea is to make the entire Nix store content-
addressable, meaning that each store path has a name that corresponds to the hash of the
contents of that path. This invariant implies that if a store path is trusted, then its contents
are trusted as well, an improvement over the extension model in the previous chapter.
Of course, whether to trust a store path is a different problem, but that assessment can be
made by each individual user instead of being made globally for all users. If different users
obtain substitutes from different sources, with different levels of trustworthiness, they do
not interfere with each other.

The intensional model is a more recent development than the extensional model, and it
has only been implemented as a rough prototype. Thus some of the results in this chapter
are somewhat more tentative in nature. However, the crucial assumption of the intensional
model—that the technique of hash rewriting works on common components—has been
validated on the Nix Packages collection.

6.1. Sharing

This section motivates why sharing of a Nix store between multiple users is a desirable
property. Sharing here means that multiple users have “write access” to the Nix store,
i.e., can build and install software, create user environments, and so on. This immediately
raises issues of trust: if not all users mutually trust each other, how can they share a store?

It should be noted that many deployment systems do not support sharing in this sense.
For instance, almost all Unix deployment systems allow only the administrator (root) to
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install software. (An exception is Zero Install [112], which allows arbitrary users to install
software, with duplicate installations of the same component shared between users, i.e.,
downloaded and stored on disk only once.) So lack of sharing is not necessarily a terrible
limitation for a deployment system, as in many environments it is perfectly fine if only
the administrator can make installation decisions. Such environments include single-user
workstations (where the user is the administrator), small multi-user systems where all users
trust each other, and typical multi-user environments where it is in fact a feature if the
software environment can be determined exclusively by the system administrators.

Why do we want to share Nix stores? But many environments are somewhere in be-
tween the extremes of a single user on the one hand, and multiple users with a single
deployment authority on the other hand. Imagine a university shell server that allows any
student with an account to log in. It is clearly terribly insecure to give “root” access to
any student in order to install software. But on the other hand, it is also desirable to allow
students to install software. Other examples are computational grids and hosting environ-
ments. If the facilities of the deployment system are only available to the administrator,
the users have to “manually” install software, e.g., by compiling from source, or by down-
loading and unpacking pre-built binaries. But in either case, the advantages of using a
deployment system—such as dependency tracking—are gone and unavailable to the end-
users. This can lead to correctness problems. For instance, if a user compiles a component
that has a runtime dependency on a “globally” installed component, that is, one managed
by the deployment system, then the deployment system will have no knowledge of this de-
pendency. Thus, the deployment system may consider it safe to uninstall the dependency.

Also, if many users need a piece of software that has not been globally provided by the
administrator, and each of them installs it separately (e.g., in his or her account), this will
cause a considerable amount of resource wastage in terms of disk space, memory, CPU
time lost due to redundant dynamic link resolution, and so on.

Another scenario where sharing is extremely valuable is in build management, i.e., in
the domain of tools such as Make and Ant. A typical development model in a multi-
developer project is that developers each have a working copy of the source code, obtained
from a version management repository. Each developer then builds the project in his or her
own working copy. However, with large projects, the overhead of building can be quite
substantial, sometimes in the order of hours or days. Thus it would be great if the artifacts
created by one user could be automatically “recycled” by other users; i.e., if a user has
to build something that has already been built previously by another user, the previous
build result is re-used automatically. Some build systems have this feature, notably Vesta’s
evaluator and ClearCase’s ClearMake (discussed in Section 10.3). However, these tools
depend on non-portable techniques to implement dependency identification, as discussed
in Chapter 10.

Also, as we will see in Chapter 9, Nix is very useful for service deployment, e.g., a
concrete web server with all its software components, static configuration and static data
files, management scripts, and so on. It is easy to imagine a shared system, such as a
hosting environment, where many different users instantiate Nix services. Many of those
services will overlap, e.g., because they partially use the same software components (say,
Apache). This common subset should be stored only once.

136



6.1. Sharing

Finally, sharing is especially important in Nix because derivation outputs are typically
not relocatable, since most outputs contain references to their own output path or to other
paths in the Nix store. Any user can have a private Nix store, e.g., /home/alice/nix/store.
However, pre-built binaries assume a particular location for the Nix store; almost always,
this is /nix/store. Since the location of the Nix store is often stored in outputs, pre-built
binaries are simply not applicable to a Nix store in another location in the file system. In
fact, this is precisely why the location of the Nix store is part of the store path computation
(page 94): different hashes are computed for the same store derivations in different Nix
stores to prevent any possible mix-up through the substitute mechanism.

So for these reasons it is important for a Nix store—the “heap” or address space of
installed components in the system—to be shareable among users. This means that users
have not only “read” access to the components in the store, but can also run package
management operations themselves, i.e., build, install, uninstall and upgrade components,
both from source and from binaries through the substitute mechanism.

The trust model Of course, sharing is not hard—secure sharing is. The difficulty lies
in providing certain trust properties. Given a derivation d, how can a user trust that the
contents of d.output are actually the build result of this derivation, and not, say, a Trojan
horse placed there by another user?

The basic trust problem is as follows. A user Alice1 has obtained a set of Nix expressions
from a trusted source, Dave (the Distributor). We do not define how this trust relation
is established. The idea is that Alice trusts the producer of the Nix expressions to create
expressions that build software that is useful, does not contain Trojans or spyware, does not
destroy data, and so on. This type of trust cannot be established formally; the determination
can only be made by a combination of knowledge of the producer’s history, reputation, and
other social factors, and possibly code review (although this is beyond most users). For
instance, a Nix user will typically trust the Nix Packages collection.

We also assume that the set of expressions has been received unmodified by Alice, mean-
ing that they have not been modified by a “man in the middle”. This can be ensured by
using appropriate cryptographic techniques, e.g., verifying a digital signature on the set
of expressions [145], or fetching them from Dave through a secure channel (e.g., HTTPS
with a valid certificate).

Given this trusted set of Nix expressions, the trust property that we seek to ensure is that
if Alice installs a derivation from this Nix expression, the resulting component is one that
has been produced by that derivation. I.e., if foo.nix is trusted, and Alice runs

$ nix-env -f foo.nix -i bar

to install a derivation named bar, then the derivation output that is added to Alice’s user
environment is an actual derivation output of that derivation. It should not be possible for
other users to replace the derivation output with something else, or to interfere with the
build of the derivation. To put it precisely, the property that we want is:

The trust property: in a shared Nix store, if a user A installs or has installed
a trusted Nix expression, then the closures resulting from building the store

1We follow the convention of the security and cryptographic literature to denote the several roles in a protocol
or exchange as Alice (A), Bob (B), Carol (C), Dave (D), and so on.
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derivations instantiated from that expression are equal to what may have been
produced if user A had exclusive write permission to the Nix store.

Thus, for each user, a shared Nix store must produce the same results as if the store had
been a single-user store owned by that user. Note a subtlety in the phrasing: I say that the
result of building must match what may have produced in a single-user store, not what they
would have been. This is due to indeterminism; a single derivation may produce different
results (e.g., due to time stamps). In essence, each derivation has a possibly infinite set
of possible build results, its output equivalence class. But we do not have a direct way to
test set membership in this class, i.e., to verify that a particular output was produced by a
derivation. Testing this set membership is undecidable in general.

Informally, the trust property can be stated as follows:

If the source of a component is trusted, then the binary that is installed in the
user’s user environment is also trusted.

Breaking the trust property So under what circumstances can the trust property be vi-
olated? The principal scenarios were sketched at the beginning of this chapter. Clearly, if
users can modify the contents of the Nix store directly, then there is no security whatsoever.
So let’s assume that all operations on the Nix store are executed by a Nix server process
(daemon) that performs Nix operations, such as instantiation, building and adding garbage
collector roots, on behalf of users; and that only this server process and its children have
write access to the store and the Nix database.

Even if direct access to the store is prevented in this way, malicious users can still “hack”
the store by creating and building a derivation whose builder modifies other paths than its
output path, e.g., overwrites an already existing store object with a Trojan horse. This
violates the trust property, as the store object no longer corresponds to an actual output of
its deriver.

Then there is the substitute mechanism. Recall from Section 5.5.3 that a substitute is
an arbitrary program that builds a store path, typically by downloading its contents from
somewhere. How can we trust that a substitute for a derivation output path actually pro-
duces contents that correspond to an actual output of the derivation? So the substitute
mechanism can be used to trivially violate the trust property.

Sharing in the extensional model In the extensional model of the previous chapter,
sharing a Nix store is only possible if all users of the Nix store trust each other not to violate
the trust property. For instance, suppose that user Alice has obtained a Nix expression
E from a trusted source, and pulls substitutes from machine X , where X is a malicious
machine that provides Trojaned binaries for the output paths of the derivation produced by
E. For instance, it provides a manifest with the following substitute definition:

{ StorePath: /nix/store/bwacc7a5c5n3...-hello-2.1.1 106
NarURL: http://haxxor.org/dist/f168bcvn27c9...-hello.nar.bz2

Size: 35182 }

where the NAR archive f168bcvn27c9...-hello.nar.bz2 unpacks to a version of Hello 2.1.1
containing a Trojan horse that installs a back door on Alice’s machine. (Manifests were
briefly discussed in Section 2.6, and will be covered in detail in Section 7.3.) When Alice
executes the Hello binary, her account may become compromised.

138



6.2. Local sharing

Suppose that subsequently Bob wants to install the same expression E. He first pulls
from a different, trusted machine Y , obtaining a bona fide substitute:

{ StorePath: /nix/store/bwacc7a5c5n3...-hello-2.1.1 107
NarURL: http://nix.org/dist/1hnv0817f168...-hello.nar.bz2

Size: 34747 }

However, this correct substitute will not avail him. When he installs Hello from the
trusted Nix expression (nix-env -i hello), Alice’s Trojaned binary will be added to his
user environment. After all, the Hello derivation’s output path, /nix/store/bwacc7a5c5n3...-
hello-2.1.1, is already valid, and by the substitute mechanism (Figure 5.15) that is sufficient
to finish the build of the derivation.

The basic problem is that both substitutes want to occupy the same location in the file
system (cf. 106 and 107 ); but this is of course not possible. Nix makes an assumption
of extensional equality (Section 5.7): any substitute for the same path is behaviourally
equivalent. But it has no way to verify that this assumption is valid.

Thus, source X may claim that its substitute is an output of some derivation d; but this
may be a lie, leading to a violating of the trust property. We can therefore only register
substitutes from source X if all users that share the store trust source X .

The remainder of this chapter first shows that the trust property actually can be provided
in the extensional model for locally built derivations. Thus, users need not have mutual
trust relations. However, secure sharing becomes impossible once substitutes are used.
This leads to the development of the intensional model that enables sharing of a Nix store
even in the presence of substitutes.

6.2. Local sharing

As we have seen above, sharing between machines is only possible in the extensional
model if all users have the same remote trust relations. For locally-built derivations on the
other hand (i.e., when not using substitutes), we can allow mutually untrusted users. The
trick is in preventing a user from influencing the build for some derivation d in such a way
that the result is no longer a legitimate output of d.

For instance, if Alice has direct write access to the Nix store, she can start a build of
derivation d, then overwrite the output path with a Trojan horse. Similarly, even if builds
are done through a server process that executes builds on behalf of users but running under
a different user ID (uid), Alice can interfere with the build of d by starting a build of a
specially crafted derivation d′, the builder of which writes a Trojan horse to the output
path of d.

To ensure that the trust property holds for locally-built derivations, we therefore need to
ensure that the following specialised property holds.

The execution of the builder of a derivation d (d.builder) modifies no path in
the Nix store other than d.output.

We can ensure this property as follows. First, users no longer have direct write access
to the Nix store. As suggested above, this is the absolute minimum measure necessary
to obtain secure sharing. All builds are performed by a Nix server process on behalf of
users. The server runs builders under user IDs that are distinct from those of ordinary
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user or system processes (e.g., nix-build-{1,2, . . .}). Also, no two concurrent builds can
have the same uid. This prevents one builder from interfering with the output of another,
as illustrated above. Thus, the server maintains a “pool” of free and in-use uids that can
be used for building. How a builder can create its intended output path is discussed on
page 157.

When a build finishes, prior to marking the output path as valid, we do the following:

• Ensure that there are no processes left running under the uid selected for the builder.
On modern Unix systems this can be done by performing a kill(-1, SIGKILL) opera-
tion while executing under that uid, which has the effect of sending the KILL signal
to all processes executing under uid [99]. Older versions of the POSIX standard
however did not mandate this behaviour [98]: on such systems, killing all processes
running under a certain uid is tricky as it is fraught with race conditions.

• Change ownership of the output to the global Nix user.

• Remove write permission and any set-user-ID and set-group-ID bits (which are spe-
cial permission bits on files that cause them to be executed with the rights of a
different user or group—a possible security risk).

Note that the latter two steps have a subtle race condition. For instance, if we change
ownership first, we have the risk of inadvertently creating a setuid binary owned by the
global Nix user2. If however we remove write and setuid permission first, a left-over
process spawned by the builder could restore those permissions before the ownership is
changed. This is why the first step is important. Also, on Unix, if a left-over process
opened a file before the ownership changes, it can still write to it after the change, since
permissions are only checked when a file is opened.

In conclusion, in the extensional model we can do secure source-based deployment with
sharing. Thus, the trust property is guaranteed in the absence of substitutes. Of course,
this is not enough: we also want transparent binary deployment through the substitute
mechanism.

6.3. A content-addressable store

As we saw in Section 6.2, we can have secure sharing of locally built derivation outputs,
but not of remotely built outputs obtained through the substitute mechanism. All users have
to trust that the contents produced on another machine purportedly from some derivation d
is indeed from derivation d. As stated above, such a trust relation must be global for a Nix
installation. In this section we develop a substantially more powerful model in which this
is not the case. We do this by moving to a fully content-addressable Nix store for all store
objects.

The property of content-addressability means that the address of an object is determined
by its contents. Equivalently, if we know the contents of an object, we know its address.
In the context of Nix, addresses are of course store paths. We have seen in Section 5.3

2Exactly to prevent this race, Linux removes setuid permission when changing ownership. However, this is not
standard behaviour [99].
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(page 97) that some FSOs in the extensional model have this property. In particular, store
derivations and sources added to the store by instantiate have store paths that are computed
from their contents. The function addToStore (Figure 5.3) computes the store path as
follows:

p←makePath("source", printHash16(h), name)

Thus the store path depends entirely on the cryptographic hash h of the contents of the
FSO being added, and its symbolic name. (So strictly speaking, these paths can only be
considered “content-addressing” if the symbolic name is considered part of the content.)

Since we assume that collisions of the cryptographic hash functions used in Nix do
not occur in practice (since they are supposedly infeasible to produce), we have a one-to-
one correspondence between paths and contents. This gives us some concrete properties.
Given a particular FSO fso, there is at most one path whose contents are equal to fso. Also,
assuming infeasibility of finding hash collisions and given two Nix stores both containing
a valid path p, the FSOs stored at p must be equal (for if they are not, we have found a
hash collision).

Content-addressability is an extremely useful property. Recall the example on page 138,
where Alice and Bob had different trust relations, so there were substitutes with different
contents for a single store path. This problem does not exist in a content-addressable
store, since in such a system path equality (between different substitutes) implies content
equality.

But not all store objects in the extensional model are stored in a content-addressed way.
Derivation outputs are not; the output path of a derivation is computed from the input
derivation (Figure 5.6), not from the actual contents produced by the builder. Below we
will show how we can achieve content-addressability even for derivation outputs. As we
shall see, this is not trivial due to self-referential components.

Once we have the property of content-addressability, different users can have different
trust relations: for each user we can have a different derivation to output path mapping.
This is the intensional model—equality is defined by internal contents, not by observable
behaviour. This model is much stronger than the extensional model, since it doesn’t make
the simplifying but unenforcible assumption of builder purity. Rather, intensionality is an
inherent property of the system.

6.3.1. The hash invariant

The crucial property of the intensional model is that the Nix store is now content-
addressable: if we know the contents of a store object, we know its store path.

Ideally, this would mean that if an FSO has hash h, then it is stored in the Nix store at
nixStore/h−name, where nixStore is the location of the Nix store and name is the symbolic
name for the FSO (e.g. hello-2.1.1). For instance, if a Hello FSO has truncated SHA-256
hash lm61ss8nz7hl..., then its store path would be /nix/store/lm61ss8nz7hl...-hello-2.1.1.

However, this is not sufficient, since the symbolic name must be taken into account in
the hash part of the store path as well. If the same FSO were added multiple times, but
with different symbolic names, the resulting store paths must not have the same hash part,
since our scanning approach to finding references uses only the hash part to distinguish

141



6. The Intensional Model

dependencies. Therefore, in the intensional model, the function makePath that computes
store paths from a content hash h and a symbolic name name is defined as follows:

makePath(h, name) =
nixStore+ "/"+printHash32(truncate(20, hashsha256(s)))+ "-"+name

where

s = "sha256:"+printHash16(h)+ ":"+name

Note that contrary to the definition of makePath in the extensional model (page 94), this
function produces a store path that depends only on a cryptographic hash h of the contents
of the FSO to be stored, and its symbolic name name.

The hash h is the hash of the contents of the FSO being added. It is almost, but not quite,
the SHA-256 hash over the serialisation of the FSO, i.e., hashsha256(serialise(fso)). As we
shall see below, hashing is a bit more complicated due to self-referential components.

But let’s ignore that for now. Suppose that we want to add a store object to the store that
has SHA-256 hash 73b7e0fc5265... and symbolic name hello-2.1.1. Then,

s = "sha256:"+ "73b7e0fc5265..."+ ":"+ "hello-2.1.1"

= "sha256:73b7e0fc5265...:hello-2.1.1"

and since

printHash32(truncate(20,hashsha256(s))) =
"wf9la39rq7sx5hj0jry0mn5v48w8cmwi",

we obtain the store path

/nix/store/wf9la39rq7sx5hj0jry0mn5v48w8cmwi-hello-2.1.1

The hash part wf9la39rq7sx... is determined entirely by the contents and the symbolic
name. There can never be another object in the store with the same contents and symbolic
name, but with a different store path. So there is a correspondence between a store path’s
hash part, and the contents at that store path. This is called the hash invariant, and it is
what sets the intensional model apart from the extensional model.

Invariant 7 (Hash invariant). The hash part of a valid store path p is determined by the
cryptographic hash of p:

∀p ∈ Path : valid[p] 6= ε → p = makePath(valid[p],namePart(p))

Recall that namePart(p) returns the symbolic name component of path p, e.g. for
/nix/store/bwacc7a5c5n3...-hello-2.1.1 it returns hello-2.1.1. Also recall that valid[p] con-
tains the cryptographic hash of the serialisation of the FSO at p, stored when p was made
valid. Due to the stored hash invariant (page 96), this hash must match the actual contents at
p. Also note that while we compare the entirety of p to makePath(valid[p],namePart(p)),
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it is only the hash part of p that actually matters. The equality of the name part is tautolog-
ical, since we feed namePart(p) into the call to makePath.

So how does content-addressability help us to achieve secure sharing in multi-user Nix
stores? The answer is that users can now independently install software, i.e., build deriva-
tions. If the results of those independent builds are the same, they get sharing; if results
differ due to impurity, they do not. This applies not just to local builds but more signifi-
cantly to substitutes.

In the example on page 138, when Alice installs a derivation for Hello using a Trojaned
substitute from a malicious machine, the result will end up in some path, say /nix/store/-
5n5drxv693s3...-hello-2.1.1. If Bob installs the same derivation but using a legitimate sub-
stitute, the contents will differ and thus the result will necessarily be in a different store
path, e.g. /nix/store/4d6hb6vxh388...-hello-2.1.1. This path will be added to his user envi-
ronment. Thus, he is insulated from Alice’s bad remote trust relation.

6.3.2. Hash rewriting

The property of content-addressability is easily stated but not so easily achieved. This is
because we do not know the content hash of a component until after we have built it, but
we need to supply an output path to the builder beforehand so that it knows where to store
the component. In order to achieve content-addressability for derivation output, we must
rename them after they have been built to the appropriate content-addressed name in the
store. Roughly speaking, we first build the derivation in a temporary location, compute the
hash over the result, and rename the temporary path to the content-addressed final location.

So the first step is to perform a build in a store path p with a randomly generated hash
part, i.e.,

p = makePath(randomHash(), name)

The function randomHash() produces a sufficiently long pseudo-random base-32 number
of the same length as a normal hash part, i.e., 32 characters. For instance, if we are building
Hello, we might produce the temporary path

p = makePath("2c8d367ae0c4...", "hello-2.1.1")
= /nix/store/2jxsizriq3al...-hello-2.1.1

Thus, the builder is executed with the environment variable out set to the store path
/nix/store/2jxsizriq3al...-hello-2.1.1.

If the build finishes successfully, we compute the SHA-256 hash h over the serialisation
of the FSO at p. We then rename path p to p′, computed as follows:

p′ = makePath(h, name)

Thus, the temporary path p, which did not obey the hash invariant, is changed to one that
does obey the hash invariant. Suppose that after the build of Hello we compute content
hash 5c769ad74cac.... Then the final path p′ becomes:

p = makePath("5c769ad74cac...", "hello-2.1.1")
= /nix/store/jj8d7j9j6scc...-hello-2.1.1
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So the temporary build result /nix/store/2jxsizriq3al...-hello-2.1.1 is renamed to /nix/store/-
jj8d7j9j6scc...-hello-2.1.1.

There is a snag, however: simply renaming the temporary path doesn’t work in case of
self-references, that is, if the binary image of a file refers to its own store path. This is
quite common. For instance, the RPATH of a Unix executable (page 23) frequently points
to its own directory so that related library components can be found. If we rename the
temporary path p to p′ in such a case, the references to p will become dangling references,
and the component probably will not work anymore.

We solve this problem through the technique of hash rewriting. The basic idea is that
we copy p to p′, but at the same time replace all occurrences of the string hashPart(p) in
the FSO with hashPart(p′). (Recall that hashPart(p) yields the hash part of path p.)

However, this changes the contents of the component, thereby invalidating the hash!
So we have a circular problem: we want to change the contents of an FSO to match its
hash, but that changes its hash, so the contents must be changed again, and so on. With
cryptographic hashes it is not feasible to compute a “fixed point”: a string that contains a
representation of the hash to which the string hashes. I.e., it is not computationally feasible
to compute a string s such that

s = s1 +printHash(hasht(s))+ s2

where s1 and s2 are an arbitrary prefix and suffix to the occurrence of the hash representa-
tion.

We solve this problem by computing hashes modulo self-references. Essentially, this
means that we ignore self-references when computing the hash. So the hash h is not com-
puted as the SHA-256 hash of the serialisation of the FSO:

h = hashsha256(serialise(readPath(p)))

Instead, the hash is computed over the serialisation of the FSO, with all occurrences of
hashPart(p) zeroed out. That is,

h = hashModulo(serialise(readPath(p)), hashPart(p))

where

hashModulo(c, hp) = hashsha256( ∑
i∈find(c,hp)

(i+ ":")+ ":"+ replace(c, {hp 0}))

The function find(c,h) (first seen in Section 5.5) yields the offsets of the occurrences of the
substring h in the string s. The constant 0 denotes a string consisting of binary 0s of the
same length as the hash part hp, 32 characters. The function replace(c,r) applies a set of
textual substitutions r to the string s. Textual substitutions in r are denoted as x y, i.e.,
occurrences of the string x are replaced with the string y.

The function hashModulo computes a hash not just over c with the hash part hp cleared
out, but also takes the offsets of hp into account. It is necessary to encode the offsets of
the occurrences of hp into the hash to prevent hash collisions for strings that are equal
except for having either hp or 0-strings at the same location. The colons simply act as
disambiguators, separating the offsets and the contents.
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For example, suppose we have two FSOs A and B that are equal except that at one point,
A has a self-reference while B has zeroes, e.g.,

A = "xxxxHxxxHxxHxxx"

B = "xxxxHxxx0xxHxxx"

where H is a self-reference and 0 is a string of 32 zeroes. If we do not take self-reference
locations into account, A and B will hash to the same value.

The hash h computed using hashModulo is used to produce the new store path p′ as
described above, i.e., using makePath. Then, we copy p to p′, rewriting all occurrences of
hashPart(p) in the contents of p with hashPart(p′):

writePath(p′, deserialise(c′))

where

c′ = replace(serialise(readPath(p)), hashPart(p) hashPart(p′)).

Note that even though in case of self-references in general

hashsha256(serialise(readPath(p))) 6= hashsha256(serialise(readPath(p′))),

we do have

hashModulo(serialise(readPath(p)), hashPart(p))
= hashModulo(serialise(readPath(p′)), hashPart(p′)).

That is, the hash modulo the randomly generated hash part does not change after hash
rewriting.

6.4. Semantics

We can now formalise the intensional model. The main difference with the extensional
model is that output paths are no longer known a priori. But because of this, we cannot
prevent re-building a derivation by checking (as was done in substitute in Figure 5.15)
whether its output path is already valid. The same applies to checking for substitutes,
which are also keyed on output paths.

Also, due to impurity, a single derivation can now result in several distinct components
residing at different store paths, if the derivation is built multiple times (e.g., by different
users). That is, a derivation actually defines an equivalence class of store paths within the
Nix store, the members of such classes all having been produced by the same derivation.

Therefore, we make the following change to the abstract syntax of store derivations
defined in Figure 5.5 (page 101). The field output is removed; we don’t know the output
path in advance. But we add a field eqClass : EqClass that identifies the equivalence class
of the output.

So what is an equivalence class (i.e., what is the type EqClass)? In fact, the equiva-
lence class eqClass is exactly the same as the original output field! It is computed in the
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same way, namely, by hashing the derivation with its eqClass field set to the empty string
(callout 64 on page 102). Note that the hash parts produced there cannot conflict with
those computed by makePath in the previous section, assuming that there are no hash col-
lisions (since the former hash preimages start with sha256:output:out:, while the latter hash
preimages start with sha256: followed by a hash). So for instance, when instantiating our
running example, the Hello derivation, we obtain d.eqClass = "/nix/store/bwacc7a5c5n3...-
hello-2.1.1". In the extensional model, we had d.output = "/nix/store/bwacc7a5c5n3...-hello-
2.1.1". Since eqClass is just a (fake) store path, the type EqClass is just an alias for the
type Path introduced for legibility.

So we have really just renamed the field output to eqClass. However, there is an im-
portant difference in the meaning of eqClass. The equivalence class path is “virtual”: it is
never built. For example, in the intensional Nix store, we will never actually build a path
/nix/store/bwacc7a5c5n3...-hello-2.1.1.

The reason for using store paths for equivalence classes is that it gives us an easy way
to refer to the output of a derivation from other derivations. For instance, the envVars field
of a derivation that depends on Firefox must in some way refer to the path of the Firefox
component, even though this path is not known in advance anymore. When we build a
derivation d depending on derivation d′, we simply rewrite in d.envVars all occurrences of
hashPart(d′.eqClass) to a trusted member of the equivalence class denoted by d′.eqClass.

Since we must remember for each derivation what output paths were produced by
it and who built or substituted them, we define a database mapping eqClassMembers :
EqClass→{(UserId,Path)}. The type UserId denotes a user identity. Here we will simply
take them to denote Unix user names, e.g., alice. More elaborate notions of identity are
also possible, e.g., using groups or classes of users.

Through the table eqClassMembers, an equivalence class maps to a set of concrete store
paths along with the names of the users that built or substituted them. For instance, if
both Alice and Bob have obtained Hello from their respective substitutes, the entry for
/nix/store/bwacc7a5c5n3...-hello-2.1.1 might be as follows:

eqClassMembers[/nix/store/bwacc7a5c5n3...-hello-2.1.1] =
{ ("alice", /nix/store/bpv6czrwrmhr......-hello-2.1.1)
, ("bob", /nix/store/mqgi8xail9vp......-hello-2.1.1)
}

Of course, a store path can occur multiple times for different users. This happens if multi-
ple builds have yielded exactly the same result (the ideal!), or if users have installed from
the same substitute.

The members of an equivalence class (i.e., the right-hand side of an eqClassMembers
entry) must be usable paths; that is, they must either be valid or have at least one substitute.

We can now define the set of trusted paths in the equivalence class of a derivation output
as the set of valid or substitutable paths for some user:

trustedPaths(eqClass, user) = {p | (user, p) ∈ eqClassMembers[eqClass]}

Equivalence classes and closures A path can be a member of multiple equivalence
classes. This is easy to see: we can conceive of any number of different derivations that
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produce the output "Hello World" in various ways. So we cannot unambiguously say to
what equivalence class a path belongs. However, as we shall see below, there are times
when we need to know this. In particular, when we compute the closure of a path p, we
want to know to what equivalence class each reference belongs. Such a query is only
meaningful given a certain context, i.e., when we compute the closure of a path p in an
equivalence class e.

To this end, a new database mapping refClasses : (Path,Path)→{(EqClass,EqClass)}
is needed. This table allows us to determine equivalence classes when we are following the
references graph. It has the following meaning: if (e,e′)∈ refClasses[(p, p′)], then there is
an edge in the references graph from path p in equivalence class e to path p′ in equivalence
class e′.

The function closure′(p, e) computes the closure of a path p in equivalence class e. It
returns a set of pairs (p,e) : (Path,EqClass). Its definition is as follows:

closure′(p, e) = {(p,e)}∪
⋃

p′∈references[p]

followRef(p,e, p′)

The auxiliary function followRef(p,e, p′) yields the closure of p′ coming from path p in
equivalence class e:

followRef(p,e, p′) =

{
closure′(p′, ε) if es′ = /0⋃

e′∈es′ closure′(p′, e′) otherwise

where

es′ = {e′ | (e,e′) ∈ refClasses[(p, p′)]}

The case where es′ = /0 is to handle paths that are not in any equivalence class. This is
quite normal: paths that are not outputs of derivations (such as sources) need not be in
equivalence classes. For such paths, the special value ε is used to denote the absence of
an actual equivalence class. It should be noted that the left-hand sides of the pairs (the
paths) in the set returned by closure′(p, e) are the same for all e given a certain p. Only
the right-hand sides (the equivalence classes) can differ.

6.4.1. Equivalence class collisions

The fact that a derivation can resolve to any number of output paths due to impurity, leads
to the problem that we might end up with a closure that contains more than one element
from the output equivalence class of a derivation.

Figure 6.1 shows an example of this phenomenon. (As in Figure 2.3, an edge from node
A to B denotes that A is a build-time input of B, i.e., the output of B can have a reference to
the output of A.) Suppose that Alice has built gtk and pkgconfig locally. These both depend
on glibc. She has also registered Bob’s remotely built libIDL as a substitute. It also depends
on glibc. However, though Bob’s glibc was built from the same derivation, due to impurities
the build result is different. Thus, the equivalence class for the Glibc derivation has at least
two members. This is not a problem in itself. However, suppose that Alice next tries to
build firefox, which depends on gtk, pkgconfig, and libIDL. We then end up with a Firefox
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Equivalence class glibc

glibc
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gtk
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Figure 6.1.: Equivalence class
collision

Equivalence class glibc

glibc
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pkgconfig
A
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glibc
B
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firefox

Figure 6.2.: Resolution of the equivalence class
collision

binary that links against two glibcs. This might work, or it might not—depending on the
exact semantics of dynamic linking. In any case, it is an observable effect—it influences
whether a build succeeds and whether the build result works properly.

Thus, we need to prevent that any closure ever contains more than one path from an
equivalence class. This is expressed by the following invariant.

Invariant 8 (Equivalence class unicity invariant). No two paths in a closure can be in the
same equivalence class.

∀p ∈ Path : valid[p] 6= ε →
∀e ∈ EqClass :
∀(p1,e1) ∈ closure′(p, e) : ∀(p2,e2) ∈ closure′(p, e) :

(e1 6= ε ∧ e1 = e2)→ p1 = p2

That is, for any two elements (p1,e1) and (p2,e2) in any closure of a valid path p, if the
equivalence classes are the same (e1 = e2), then the paths must also be the same (p1 = p2).
The condition e1 = ε is to handle paths that are not in any equivalence class (such as
sources).

So when we build a derivation, we have to select from the paths in the union of input
closures a single element from each equivalence class. However, we must still maintain
the closure invariant (page 96). For instance, in Figure 6.1, we cannot simply select the
set {glibcA,gtkA,pkgconfigA, libIDLB}, since libIDLB depends on glibcB which is not in this
set. (In this running example, for clarity I do not use store paths but symbolic constants,
e.g., glibcA for an output and glibceq for its equivalence class. The subscripts have no
significance; they just denote different store paths.)

Once again, hash rewriting comes to the rescue. We can rewrite libIDLB so that it refers
to glibcA instead of glibcB. That is, we compute a new path libIDL′B with contents

replace(serialise(readPath(libIDLB)), {hashPart(glibcB) hashPart(glibcA)})

(Of course, self-references in libIDLB must also be rewritten as described in Section 6.3.2.)
This is shown in Figure 6.2. The dotted edge denotes a copy-with-rewriting action.
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Path selection An interesting problem is which paths to select from each equivalence
class such that the number of rewrites is minimised. For instance, if we select glibcA, then
we have to rewrite one path (namely libIDLB), while if we select glibcB, we have to rewrite
two paths (gtkA and pkgconfigA). I do not currently know whether there exists an efficient
algorithm to find an optimal solution. A heuristic that works fine in practice is to do a
bottom-up traversal of the equivalence class dependency graph, picking from each class
the path that induces the least number of rewrites.

However, picking an optimal solution with respect to the current derivation is not par-
ticularly useful in any case, since it ignores both the state of the Nix store as a whole, and
future derivations. In our example Alice might in the future install many additional com-
ponents from Bob’s remote repository (e.g., because Bob is a primary distribution site).
Thus, globally there are many more paths referring to glibcB than to glibcA. In this case it
is better to select glibcB and rewrite Alice’s locally built components. Possible heuristics
include:

• Select the path that has the largest referrer closure in the Nix store. Recall from Sec-
tion 5.2.3 that the referrer relation is the transpose of the references relation. Thus,
the referrer closure of p is the set of all paths that directly or indirectly reference p.

• Select the path that is also trusted by the system administrator (e.g., a special user
named root).

• Select the path that was obtained from a substitute referring to a distribution site with
some special status.

Example In the description of the resolution algorithm below, we will use the example
from Figure 6.1. Thus, we have the following paths in the combined input closures of
Firefox, paired with the equivalence classes to which they belong:

{ (glibcA,glibceq),(glibcB,glibceq),(gtkA,gtkeq)

, (pkgconfigA,pkgconfigeq),(libIDLB, libIDLeq) }

Note that glibcA and glibcB share the same equivalence class glibceq, thus

eqClassMembers[glibceq] = {("alice",glibcA), ("alice",glibcB)}.

We have the following references:

references[gtkA] = {glibcA}
references[pkgconfigA] = {glibcA}

references[libIDLB] = {glibcB}

Also, the refClasses table tells us what equivalence classes correspond to those references,
e.g.,

refClasses[(gtkA,glibcA)] = {(gtkeq,glibceq)}

and so on.
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resolve(paths) :
// Find the conflicts.
sources← /0
for each (p,e) ∈ paths :

if e = ε : sources ∪←{p} 108

else : conflicts[e] ∪←{p} 109

// Select one path for each equivalence class.
selected← selectPaths(conflicts) 110

paths′← /0
for each (p,e) ∈ selected : 111

paths′ ∪←{maybeRewrite(p, e, selected)}
return paths′ ∪ {(p,ε) | p ∈ sources} 112

Figure 6.3.: resolve: Collision resolution algorithm

The resolution algorithm Figure 6.3 shows the resolution algorithm. The function re-
solve accepts a set paths : {(Path,EqClass)} of pairs (p,e) denoting a path p in equivalence
class e3. The elements in paths must be closed under the references relation but may vio-
late the equivalence class unicity invariant; the idea is that paths is the union of a number
of calls to closure′, defined above. The function resolve yields a closed set of paths that
does obey the invariant.

The resolution algorithm works as follows. First, the set of conflicts is determined 109 .
The mapping conflicts : EqClass→ {Path} maps the equivalence classes in paths to the
corresponding paths in paths. Note that if any equivalence class in conflicts has more than
one member in paths, there is a conflict. For our example, the conflicts set is as follows:

conflicts[glibceq] = {glibcA,glibcB} conflicts[gtkeq] = {gtkA}
conflicts[pkgconfigeq] = {pkgconfigA} conflicts[libIDLeq] = {libIDLB}

Thus, there is a conflict in the glibceq equivalence class. (Some paths are in the “fake”
equivalence class ε 108 , returned by closure′ to indicate paths that are not in an equivalence
class, such as sources. These are not subject to rewriting, but they are added to the result
returned by resolve to ensure the closure property.)

Second, the function selectPaths returns a mapping selected from equivalence classes
to paths, i.e., EqClass→ Path. That is, it chooses an element from the members of each
equivalence class in conflicts 110 . By definition, this defines a set that is free of equivalence
class collisions. We do not specify here how selectPaths chooses an element from each
class. As discussed above, it must implement some policy of selecting a path from each

3Again, it is necessary to specify the intended equivalence class because a path may be in multiple equivalence
classes. In a previous implementation, a table eqClasses : Path→ {EqClass} was used to map paths to the
equivalence classes to which they belong. This led to a subtly flawed semantics: since we didn’t know which
particular equivalence class for a path p was intended, we had to use all of them. The result was that a path
could be replaced with a path in an entirely different equivalence class.
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maybeRewrite(p, e, selected) :
newRefs← /0
eqRefs← /0
rewrites← /0

for each pref ∈ references[p] : 113
if p = pref ∨ ¬(∃eref : (e,eref) ∈ refClasses[(p, pref)]) : 114

newRefs ∪←{p}
else :

Set eref such that (e,eref) ∈ refClasses[(p, pref)]
prepl← selected[eref] 115
(p′repl,e

′
repl)←maybeRewrite(prepl, eref, selected) 116

// Note that eref = e′repl

newRefs ∪←{p′repl}
eqRefs ∪←{(pref,e,eref)}
rewrites ∪←{hashPart(pref) hashPart(p′repl)} 117

if newRefs = references[p] : return (p,e) 118

in a database transaction :
pnew← addToStore′(readPath(p),

references[p], eqRefs, namePart(p), rewrites, hashPart(p)) 119

eqClassMembers[e] ∪←{(curUser, pnew)}
return (pnew,e)

Figure 6.4.: maybeRewrite: Collision resolution algorithm (cont’d)

equivalence class. For our example, there are only two possibilities, namely

selected[glibceq] = glibcA selected[gtkeq] = gtkA

selected[pkgconfigeq] = pkgconfigA selected[libIDLeq] = libIDLB

and

selected[glibceq] = glibcB selected[gtkeq] = gtkA

selected[pkgconfigeq] = pkgconfigA selected[libIDLeq] = libIDLB

Note that the paths of neither set are closed under the references relation. Thus, they are
not a valid set of paths that can be used as an input to a build. Indeed, the builder might
traverse each path to arrive at its references; if we pick the first set, glibcB might still be
reached by following libIDLB.

Therefore, the paths in selected must be rewritten to a new set of paths that is closed
under the references relation, and still obeys the equivalence class unicity invariant. This
is done by the helper function maybeRewrite shown in Figure 6.4, which resolve calls for
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each selected path 111 . maybeRewrite takes a path p in equivalence class e, and returns a
new store path pnew in the same equivalence class e.

The basic idea is that the path pnew is a copy of p produced by rewriting all references
of p that are not in selected, to equivalent paths that are in selected. Thus, we walk over
all references 113 , and for each reference pref in equivalence class eref that is not trivial
(i.e., a self-reference to p) or a source (there is no eref) 114 , the equivalent path prepl =
selected[eref] is chosen 115 . That is, the reference is replaced with the path that was selected
for its equivalence class. All these prefs together form the set of new references newRefs.
If the new set of references is not equal to the old 118 , a set of rewrites is applied to the
contents of p that replaces the hash part of each pref with the hash part of the corresponding
prepl 117 . This rewriting is done by the function addToStore′ (explained below), and yields
a new store path pnew 119 .

There is a final complication, though; the selected replacement reference prepl may itself
not be closed with respect to selected, and therefore in need of rewriting. Thus, prepl itself
is rewritten using maybeRewrite 116 , and it is the resulting path p′repl that is actually used
in the new set of references and for the hash rewrites.

The pseudo-code of maybeRewrite shown in Figure 6.4 will typically perform many
redundant recursive calls. This is safe, since the implementation of addToStore′ is idem-
potent. In the actual implementation, simple memoisation is used to remember for each
path p in equivalence class e the corresponding rewritten path pnew.

In essence, maybeRewrite performs a bottom-up rewrite on the graph of selected paths.
Let us illustrate this using our example. Suppose that we have selected the set {(glibcA,
glibceq), (gtkA,gtkeq), (pkgconfigA,pkgconfigeq), (libIDLB, libIDLeq)}. We first call may-
beRewrite on (glibcA,glibceq). This path has no references, so (glibcA,glibceq) is returned.

Next, we call maybeRewrite on (gtkA,gtkeq). This path does have a reference, namely,
glibcA in the equivalence class glibceq. We replace this reference with the path in selected
in equivalence class glibceq, which happens to be glibcA itself. Recursively applying may-
beRewrite to (glibcA,glibceq) yields (glibcA,glibceq). Thus, nothing changes in the refer-
ences, and (gtkA,gtkeq) is returned. The same happens with (pkgconfigA,pkgconfigeq).

However, when we call maybeRewrite on (libIDLB, libIDLeq), things get more interesting
since we do need a rewrite. This is because its sole reference, glibcB is replaced with
glibcA. Therefore, a copy is made of libIDLB, in which the occurrences of hashPart(glibcB)
are replaced with hashPart(glibcA). This yields a new path, libIDL′B, which has a reference
to glibcA instead of glibcB. In summary,

maybeRewrite(glibcA, glibceq, selected) = (glibcA,glibceq)

maybeRewrite(gtkA, gtkeq, selected) = (gtkA,gtkeq)

maybeRewrite(pkgconfigA, pkgconfigeq, selected) = (pkgconfigA,pkgconfigeq)

maybeRewrite(libIDLB, libIDLeq, selected) = (libIDL′B, libIDLeq)

Thus the set returned by resolve for our running example is {(glibcA,glibceq), (gtkA,gtkeq),
(pkgconfigA,pkgconfigeq), (libIDL′B, libIDLeq)}. Note that this set is closed under the refer-
ences relation since libIDL′B references glibcA, not glibcB.

It may not be obvious at first glance that resolve is correct, i.e., that it produces a set of
paths that obeys the equivalence class unicity invariant, and is closed. The first property is
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trivial, since selectPaths by definition yields a set selected that obeys the invariant, and we
call maybeRewrite once for each (p,e) ∈ selected, yielding a path in the same equivalence
class. The second property is more subtle, and is proved as follows.

Theorem 5 (Closure of resolved set). The paths in the set paths′ returned by the function
resolve in Figure 6.3 are closed under the references relation.

Proof. The proof is by structural induction. Note that maybeRewrite is called for each
(p,e) in selected. The induction hypothesis is that the closure of every path returned by a
call to maybeRewrite for a path p in equivalence class e is in paths′.

There is one base case: if a path (p,e) ∈ selected has only trivial or source references,
maybeRewrite returns (p,e) unmodified, so (p,e) ∈ paths′. Any non-trivial references are
source references and explicitly included in paths′ at 112 . Thus the hypothesis holds.

The inductive step is as follows. If a path (p,e) ∈ selected has non-trivial references,
then it is rewritten to a new path (pnew,e). Each non-trivial, non-source reference pref
of p in equivalence class eref is rewritten by a recursive call to maybeRewrite on prepl =
selected[eref], i.e., the selected replacement for (pref,eref). Note that (prepl,eref) ∈ selected,
which by the induction hypothesis means that the closure of p′repl is in paths′.

Since this is the case for all p′repl, the closures of all references of the path pnew produced
by the call to addToStore are in paths′, and since pnew is returned and added to paths′, the
closure of pnew is also in paths′.

6.4.2. Adding store objects

Figure 6.5 shows the intensional version of the function addToStore that adds an atom
(an FSO) to the Nix store. It is merely a wrapper around a more powerful function,
addToStore′, that writes an FSO to the Nix store at its proper content-addressed location.
addToStore′ is the only primitive operation that adds valid paths to the store in the inten-
sional model. This is in contrast to the extensional model, where the functions build and
substitute also produce valid paths. It takes six arguments:

• fso is the FSO to be written to the store.

• refs is the set of referenced store paths of the FSO.

• eqRefs is a set of tuples (pref,e,eref) that describe elements to be added to the ref-
Classes mapping. Each tuple signifies that, given a resulting path p, the entry (e,eref)
should be added to refClasses[(p, pref)].

• name is the symbolic name to be used in the construction of the store path.

• rewrites is a set of hash rewrites (i.e., h1 h2) to be applied to the FSO and to the
references refs and eqRefs.

• selfHash is the hash part of the path from which the FSO is being copied. As dis-
cussed in Section 6.3.2, self-references must be zeroed out when computing the
cryptographic hash of the FSO, and must be replaced with the hash part of the new
store path of the FSO. For atoms (such as sources), which originate from outside of
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addToStore(fso, refs, name) :
return addToStore′(fso, refs, /0, name, /0, ε)

addToStore′(fso, refs, eqRefs, name, rewrites, selfHash) :
c← replace(serialise(fso), rewrites) 120
if selfHash 6= ε :

h← hashModulo(c, selfHash) 121
else :

h← hashsha256(":"+ c) 122
p←makePath(h, name) 123
if valid[p] = ε :

lock← acquirePathLock(p)
if valid[p] = ε :

if selfHash 6= ε :
c← replace(c, {selfHash hashPart(p)}) 124

rewrites ∪←{selfHash hashPart(p)}
writePath(p, deserialise(c))
in a database transaction :

valid[p]← h
refs←{replace(p, rewrites) | p ∈ refs} 125
setReferences(p, refs)

releasePathLock(p, lock)
for each (pref,e,eref) ∈ eqRefs :

refClasses[(p, replace(pref, rewrites))] ∪←{(e,eref)} 126
return p

Figure 6.5.: addToStore: Adding store objects to a content-addressable store

the Nix store, no such self-reference is present in the FSO; the dummy value ε must
then be provided for selfHash. But when copying store paths, such as in the collision
resolution algorithm (Figure 6.3) or in the build algorithm (Figure 6.6), selfHash is
set to the hash part of the source path.

The function addToStore′ works as follows. First, the hash rewrites are applied to the
serialisation of the FSO 120 . Next, the hash modulo self-references is computed using
the function hashModulo (page 144) 121 . However, this is only applicable when copying
inside the store, that is, when selfHash is not ε . If it is ε , the hash is computed normally
over the serialisation, but with a colon prepended 122 . This exactly matches a hashModulo
computation over contents that contain no self-references, since in that case we have

hashModulo(c, hp) = hashsha256( ∑
i∈find(c,hp)

(i+ ":")+ ":"+ replace(c, {hp 0}))

= hashsha256(∑
i∈ /0

(i+ ":")+ ":"+ replace(c, {hp 0}))

= hashsha256(":"+ c)

154



6.4. Semantics

and so selfHash is not needed.
The hash and symbolic name are used to construct a store path p 123 . Then, just as in

the extensional version of addToStore, we check if p is already valid, and if not, acquire
an exclusive lock on p and recheck for validity. If the path is still not valid, selfHash
is rewritten to hashPart(p) (if applicable) 124 , and the FSO is written to p. The path
is then registered as valid. But note that the hash rewrites that have been applied to the
contents c are also applied to the set of references 125 . This ensures, for instance, that the
old references passed in maybeRewrite 119 are changed to the new references. Likewise,
appropriate refClasses entries are added as described above 126 .

6.4.3. Building store derivations

Figure 6.6 shows the build algorithm for the intensional model. As in Section 6.2, we
assume that all operations on the Nix store are done by a privileged user on behalf of the
actual users, who do not have write access themselves.

The most important differences with the build algorithm for the extensional model (Fig-
ure 5.11) are as follows. Since there is no longer a single output that can be substituted or
checked for validity, we have to consider all paths in the output equivalence class. Thus,
we query the set of trusted paths in the equivalence class d.eqClass 127 . We then check
whether any of those paths are valid; if so, we’re done 128 . If not, we try to create one
through substitutes 129 .

If all of the substitutes fail, we have to perform the build. We first recursively build
all input derivations. Just as in the extensional build algorithm, the set inputs of input
paths is computed. However, this set may contain equivalence class collisions. Thus,
those conflicts must be resolved 130 . The resulting set inputs is a closure that obeys the
equivalence class unicity invariant.

Recall that the envVars, args and builder fields of the derivation cannot refer to the output
paths of the actual input derivations, because those are not yet known at instantiation time.
Rather, these fields refer to the output equivalence classes of the input derivations. Now
that we have actual paths for the inputs, we can rewrite the hash parts of the equivalence
classes to the hash parts of the actual paths 131 .

The build is performed with the environment variable out set to a temporary path in
the Nix store 132 . The temporary output path is computed by replacing the hash part of
the output equivalence class with a random hash part of the same length, as described in
Section 6.3.2.

After the build, we copy and rewrite the temporary path to its final, content-addressable
location in the Nix store 133 . The temporary path can now be deleted. The new store path
is registered as being inside the equivalence class d.eqClass 134 .

It is worth noting that the intensional build algorithm does not perform locking. It does
not have to. The random temporary path can be assumed to be unique if the random-
number generator is sufficiently cryptographically strong, or we can simply check whether
it already exists, and if so, pick another path. Since the temporary path is unique, there can
be no interference from other Nix processes building the same derivation. The absence of
locking has the advantage that it simplifies the implementation and prevents a malevolent
user from causing a livelock (e.g., by registering a substitute for a path that does not termi-
nate). On the other hand, it may also create work duplication if multiple processes perform
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build(pdrv) :
if ¬ substitute(pdrv) : abort
d← parseDrv(readPath(pdrv))

// Note: curUser is the invoking user.
trusted← trustedPaths(d.eqClass, curUser) 127
for each p ∈ trusted : if valid[p] 6= ε : return p 128
for each p ∈ trusted : if substitute(p) : return p 129

// Gather all trusted input closures, then resolve.
inputs← /0
for each p ∈ d.inputsDrvs :

d′← parseDrv(readPath(p))
build(p)
for each p′ ∈ trustedPaths(d′.eqClass, curUser) :

inputs ∪← closure′(p′, d′.eqClass)
for each p ∈ d.inputsSrcs :

inputs ∪← closure′(p, ε)
inputs← resolve(inputs) 130

// Rewrite equivalence classes to real paths.
mapping← /0
for each (p,e) ∈ inputs :

mapping ∪←{hashPart(e) hashPart(p)}
Apply the rewrites mapping to d.envVars, d.args and d.builder 131

// Build in a temporary path.
output← replace(d.eqClass, {hashPart(d.eqClass) randomHash()})
d.envVars["out"]← output 132
Run d.builder in an environment d.envVars

and with arguments d.args and in a temporary directory ptmp
Canonicalise output & perform fixed-output derivation tests as in Figure 5.11

// Copy to content-addressed location and register as valid.
refs← scanForReferences(output, {p | (p,e) ∈ inputs})
in a database transaction :

output′← addToStore′(readPath(output), refs,
{(pref,d.eqClass,eref) | (pref,eref) ∈ inputs∧ pref ∈ refs},
namePart(d.eqClass), /0, hashPart(output)) 133

eqClassMembers[d.eqClass] ∪←{(curUser,output′)} 134
return output′

Figure 6.6.: build: Building store derivations in the intensional model
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exactly the same build. This is safe, however: even if multiple builds produce exactly the
same outputs, the idempotency and transactional semantics of addToStore′ ensure that the
resulting path is not written to twice.

Builder write permission A trivial but annoying problem is how we can allow builders
to create their output path, i.e., the path specified in the environment variable out. After
all, the builder is not supposed to have write permission to the Nix store! Thus a builder
should not be allowed to perform:

mkdir $out

since that implies that it can also create other paths in the store. The prototype implemen-
tation of the intensional model does not yet solve this problem (builders still have arbitrary
write permission to the store). There are a number of possible solutions. On Unix, the Nix
store directory could be given the sticky permission bit (S_ISVTX) [152], which prevents
users from deleting or renaming directories not owned by them. Under the secure local
build scheme from Section 6.2, the builder runs under a unique uid that differs from the
uid that owns the valid FSOs, and from the uids of other concurrently running builders.
Thus, the builder can create other paths than its expected output, but these can be deleted
afterwards, and it cannot modify valid paths.

Another solution is to have the calling Nix process create the output path on behalf of
the builder. The builder then does not need write permission to the store directory itself.
However, Nix must know the type of the output path (i.e., regular file, directory, or symlink)
ahead of time. Finally, the builder could ask the calling Nix process to create the output
path of the appropriate type, e.g., by talking to it through a socket.

6.4.4. Substitutes

Just as the table eqClassMembers ties equivalence class membership to users, we extend
the substitutes mapping (first defined in Section 5.5.3) with a UserId for each substitute to
indicate which user registered it, i.e., substitutes : Path→ {(UserId,Path, [String],Path)}.
This means that a substitute is a 4-tuple consisting of the ID of the user who registered the
substitute, the path of the substitute program, its command-line arguments, and the deriver
(page 114). For example,

substitutes[/nix/store/bpv6czrwrmhr......-hello-2.1.1] =
{ ( "alice", "download-url.sh"

, ["http://example.org/0n4laxf6kq44....nar.bz2"]
, "/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv" )

, ( "bob", "download-url.sh"

, ["http://example.org/r35w1y8xll12....nar.bz2"]
, "/nix/store/1ja1w63wbk5q...-hello-2.1.1.drv" )
}

Adding a UserId is not strictly necessary to ensure the trust property. After all, due to
content-addressability, if a substitute for path p fails to produce a path with a content hash
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Bool substitute(p) :
if valid[p] 6= ε : return true
subs← trustedSubs(p, curUser) 135
if subs = /0 : return false
for each p′ ∈ references[p] :

if ¬ substitute(p′) : return false

for each (user, program, args, deriver) ∈ substitutes[p] :
ptmp← replace(p, {hashPart(p) randomHash()}) 136
if execution of program with arguments [ptmp]+args exits with exit code 0 :

assert(pathExists(ptmp))
p′← addToStore′(readPath(ptmp), references[p], /0

namePart(ptmp), /0, hashPart(ptmp)) 137
if p = p′ : return true 138

if fall-back is disabled : abort
return false

Figure 6.7.: substitute: Substitution of store paths in the intensional model

that corresponds with hashPart(p), the substitute can simply be considered to have failed,
and its output in p can be deleted. However, we do not want users to trigger other users’
substitutes, as that can lead to privacy violations. For instance, Alice could register a
substitute that as a side effect informs her when other users try to install certain paths.

Another necessary change is that when a substitute for path p is registered, refClasses
entries for the references of p must also be registered. This means that the command nix-
store --register-substitutes (Section 5.5.3) must be extended to accept a list of (pref,e,eref)
entries that can be added to refClasses.

Figure 6.7 shows the substitution function substitute(p). The main difference with the
extensional version (Figure 5.15) is that the substitute program must produce its output in a
temporary path ptmp 136 which is then copied (using addToStore′) to its content-addressed
location 137 . Note that it can simply pass /0 for the eqRefs argument of addToStore′, since
the refClasses entries for p have already been set when the substitute was registered.

If the resulting path p′ does not match with the path p that the substitute is supposed to
produce, the substitute is ignored and the next substitute is tried 138 . Also, only substi-
tutes registered by the current user are considered 135 . Analogously to trustedPaths, the
function trustedSubs(p, user) yields from substitutes[p] those substitutes register by user.

Security of references When a substitute is registered, the caller must also provide a
list of references and refClasses entries for the path. However, that information may be
wrong—the user could supply garbage. For instance, the references supplied by the user
could be incomplete. This could cause incomplete deployment: a path p realised through
a substitute could have dangling pointers. However, this is only a problem if the path is
used by other users. Those users presumably first register their own substitutes before they
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build a derivation that produces p. As part of the substitute registration, bona fide users
must supply a full set of references. A simple solution is therefore as follows: when users
register additional references for a path that is already valid, the additional references must
be realised through substitutes immediately, then added to the references of p.

Likewise, the registered references can contain bogus paths, i.e., paths that are not ac-
tually references. This can lead to an unsubstitutable path, e.g., where a user cannot sub-
stitute path p because another user registered a bogus (unsubstitutable) reference pref. A
simple solution is to substitute p before we substitute its references (but not before mak-
ing it valid, of course), then scan p to check what declared references actually occur. The
bogus references can then be tossed out.

6.5. Trust relations

The intensional model described in the previous section gives us a Nix store that can be
shared by mutually untrusted users, or users who have different remote trust relations. Due
to content-addressability, we get sharing between multiple builds of a derivation if each
build produces exactly the same binary result, that is, if there is no impurity in the build. If
there is impurity, then each build result will end up under a different store path.

Between untrusted users, this is exactly what we want. If Alice obtains substitutes from
a malicious machine, it does not affect Bob. Note that Alice and Bob do automatically get
sharing if they happen to get their substitutes from the same remote machine.

However, we wish to re-enable sharing in common scenarios. For instance, users gen-
erally trust components installed by the administrator. Thus, if Alice is an administrator,
then Bob should be able to use the output paths already installed by Alice. In general, users
should be able to specify trust relations between each other.

We can achieve this through a simple extension of the intensional model called the mixed
model. For each user, we maintain a mapping trustedUsers : UserId→{UserId} that spec-
ifies for each user a set of trusted users. E.g., trustedUsers["bob"] = {"alice", "bob"}. (The
mapping should be reflexive, i.e., u ∈ trustedUsers[u].) We then augment the function
trustedPaths:

trustedPaths(eqClass, user) =
{p | ∃u ∈ trustedUsers[user] : (u, p) ∈ eqClassMembers[eqClass]}

Otherwise, this is exactly the intensional model. Of course, sharing between users in-
creases the possibility of equivalence class collisions, but that is handled through the reso-
lution algorithm in Section 6.4.1. The name “mixed model” does not imply that we back
away from intensionality—the store is still fully content-addressed. We just gain back the
ability to have sharing between users. The crucial difference with the extensional model is
that sharing is now selective and fine-grained.

6.6. Related work

Nix’s transparent source/binary model is a unique feature for a deployment system. Rela-
tive to binary-only or source-only deployment models, it adds the complication that we do
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not only need to authenticate binaries but also the fact that they are a bona fide result of
certain sources. However, caching and sharing between users of build results is a feature
of some SCM systems such as Vesta [92].

As claimed in the introduction, deployment systems tend to have monolithic trust mod-
els. Typical Unix package management systems such as RPM [62], Debian APT, or Gentoo
Linux [77] allow installation of software by the administrator only; software installed by
individual users is not managed by those tools. On the other hand, Mac OS X application
bundles may be installed and moved around by any user, but the system does not track
dependencies in any way.

Security aspects of deployment have typically focused on ensuring integrity of compo-
nents in transit (e.g., by using signatures), and on assessing or constraining the impact of
a component on the system (e.g., [173]). We have not addressed the issue of ensuring
that remote substitutes have not been tampered with (e.g., by a man-in-the-middle). Obvi-
ously, such problems can be solved by cryptographically signing substitutes—or rather the
manifests, since the fact that substitutes themselves have not been tampered with is easily
verified by comparing their cryptographic hashes to their names.

Microsoft’s .NET has a Global Assembly Cache that permits the sharing of compo-
nents [154]. It is however not intended for storage of components private to an applica-
tion. Thus, if multiple users install an application having such private components, du-
plication can occur. Also, .NET has a purely binary deployment model, thus bypassing
source/binary correspondence trust issues.

In [80] a scenario is described in which components impersonate other components.
This is not possible in a content-addressable file system with static component composition
(e.g., Unix dynamic libraries with RPATHs pointing to the full paths of components to link
against, as happens in the Nix Packages collection).

Content-addressability is a common property of the distributed hash schemes used in
peer-to-peer file-sharing and caching applications (e.g., Pastry [144]). It is also used in the
storage layer of version management tools such as Monotone [95].

6.7. Multiple outputs

Apart from secure sharing, a major advantage of the intensional model is that it allows
derivations to have multiple outputs. Derivations as we have defined them up till now
produce a single output, i.e., just one store path in the Nix store. However, in many cir-
cumstances it is very useful to allow a derivation to produce multiple outputs, i.e., multiple
store paths. This allows finer-grained deployment, reducing the size in bytes of the closures
that need to be deployed to and stored on client machines.

For instance, the GNU C Library component, Glibc, contains parts that are not actually
needed at runtime by the components that depend on it. Among these parts is its subdirec-
tory /include that contains 2.8 MiB of C header files and is only needed at build time. If
we perform a binary deployment of a dependent component to clients, it is quite wasteful
that these header files are copied also. In fact, the Glibc header files contain a symlink to
a different component, the Linux Kernel headers, which take up 7.6 MiB. So the unneces-
sary Glibc header files drag along another entirely unnecessary component! Incidentally,
this is why the Hello example in Chapter 2 had a retained dependency on linux-headers
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(page 41).
Multiple outputs are not yet implemented in Nix, so there is no concrete syntax for

specifying them in Nix expressions. A possible syntax is as follows. A derivation with
multiple outputs specifies a list of symbolically named outputs in the attribute outputs.
The Glibc derivation would specify the following:

derivation { ...

outputs = ["out" "dev" "bin"]

}

This declares three outputs. The output out contains the bulk of the component, i.e., the
C library. The output dev contains development-only parts, such as the header files men-
tioned above. The output bin contains utility programs shipped with the C library, which
like the header files are not necessary for most users.

The effect of the outputs attribute is that the resulting store derivation specifies not one
output equivalence class, but rather several, identified by their symbolic names, e.g.,

dglibc.eqClasses = { ("out", "/nix/store/jzhnqh7ffq72...-glibc-2.3.5")
, ("dev", "/nix/store/34z5jyqqs1sf...-glibc-2.3.5-dev")
, ("bin", "/nix/store/76zsvfw4zizs...-glibc-2.3.5-bin")}

Conversely, a way is needed for dependent components to refer to specific outputs. A
component foo can specify that it needs the out and dev outputs of Glibc, but (by omission)
not bin:

{glibc}: derivation { ...

glibc = glibc.out; # can be shortened to just "glibc"

glibcHeaders = glibc.dev;

}

To represent this in store derivations, the elements of the inputDrvs field become tuples that
specify which output of an input derivation is needed for a build, e.g.,

dfoo.inputDrvs = { (pd,glibc,{"out", "drv"}), ...}

where pd,glibc is the store path of the derivation containing dglibc. In fact, the on-disk ATerm
representation of store derivations already supports this extension (see Figure 5.8).

So why are multiple outputs impossible in the extensional model? Imagine that we
install Hello from source, and add it to a user environment. Hello has a reference to the
out output of Glibc, but not the bin and dev outputs. Thus, when we run the garbage
collector, those outputs will be deleted (if they were present to begin with). Suppose that
we subsequently build a derivation that has a dependency on (say) the bin output of Glibc.
Unless we have a substitute that builds that path, we now have an unsolvable problem. The
only way that we can obtain the path without a substitute is to build Glibc. But the Glibc
build would overwrite its own out output, which is already valid, and thus should never be
modified. (If the overwriting is atomic or otherwise unobservable, there is no problem, but
that is not the case in general.) So we need to delete the out output first. But to delete it
violates the closure invariant, as that path is reachable from a user environment. So the Nix
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store is “jammed”: we have reached a state where a build simply cannot be done because
it is blocked by the validity of some of its outputs.

In the intensional model, this problem does not exist. A build can always be done,
because the outputs go to temporary paths that are constructed on the fly. We can simply
perform a build to obtain all of its outputs in temporary paths, copy the missing outputs to
content-addressed locations, and discard the outputs that we already have. In the example
above, we perform a full build of Glibc. The outputs end up in temporary paths pout , pdev,
and pbin. We finalise the previously missing outputs pdev and pbin using addToStore′, and
discard pout as we already have it. The FSOs in pdev and pbin might have references to
pout , but those can be rewritten to the path of the out output that we already had.

The outputs of a derivation can have references to each other, and in fact this is quite
common. For instance, it can be expected that the programs in the bin output of Glibc
depend on the libraries in the out output. This means that the out output is in the closure
of the bin output, but not vice versa. But what happens when there are mutually recursive
references, e.g., when out also refers to bin? These must be forbidden, since the hash
rewriting scheme from Section 6.3.2 cannot handle them. For instance, when we copy out
and bin to their content-addressable locations, we must rewrite in both FSOs the hashes
of both paths. The function hashModulo only handles direct self-references, and it can do
so because the hashes to be disregarded in the hash computation are encoded into the file
name.

Fortunately, banning mutually recursive outputs is not a very onerous restriction, since
they are pointless. After all, mutual recursion between output paths requires them to be
deployed and garbage collected as a unit, negating the granularity advantages that multiple
outputs are intended to achieve.

6.8. Assumptions about components

It is useful to make explicit at this point what assumptions Nix makes about compo-
nents, i.e., the requirements imposed on components in order to allow them to be deployed
through Nix. These assumptions are:

• The component can be built with and installed at an arbitrary prefix. Counterexample
of a component that violates this assumption: some Linux system components have
Makefiles that contain “hard-coded” paths such as /lib. (Such Makefiles are easily
patched, though.)

• Likewise, the component does not expect that its dependencies are installed at certain
fixed locations, and the locations of the dependencies can instead be specified at
build or runtime. Counterexample: the GNU C Library, Glibc, has a hard-coded
dependency on the POSIX shell in /bin/sh.

• The component can be built automatically, i.e., with no user interaction whatsoever.
Counterexample: the Unreal Tournament 2004 Demo has an interactive installer
that among other things asks the user to approve a license agreement. (Nevertheless
it is in Nixpkgs, since we can bypass the installer by unpacking the TAR archive
embedded in the installer’s executable.)
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• The build process of the component is essentially pure (i.e., deterministic), mean-
ing that the output of the build process is fully determined by the declared inputs.
Counterexample: any builder that depends on a mutable network resource. This is
why fetchurl checks the downloaded file against a pre-specified cryptographic hash.
Another counterexample: the archiving tool for object files (ar) on Mac OS X stores
timestamps in archives, and these must not be newer than the timestamp on the
archive itself; otherwise, the linker will refuse to use the archive. (Since Nix canoni-
calises timestamps to 1970 through canonicalisePathContents (page 112), i.e., back
in time, this is not a problem.)

• The component does not need to be modified after it has been built, e.g., at runtime.
Counterexample: Firefox 1.0 needs to be run interactively with write permission
to its installation directories so that it can create some additional files. (However,
there is an obscure, poorly documented solution for this that allows these files to be
generated non-interactively.)

• The component has no environment dependencies. For instance, the component
should not require global registry settings. It is however fine to use automatically
created per-user configuration files or state. In other words, it should not be nec-
essary to run a program to realise the required environment; the closure in the Nix
store should be the only dependency. Counterexample: system daemons (server pro-
cesses) that require the existence of certain user accounts.

• Retained dependencies can be found in the component through scanning by scan-
ForReferences. There is no pointer hiding.

The intensional model makes one additional assumption:

• Hash rewriting does not change the semantics of the component. For instance, the
component has no internal checksums that are invalidated by hash rewriting.

If these assumptions hold for a component, then it can be deployed through Nix. Of
course, this raises the obvious question of whether these assumptions are likely to hold for
components in practice. In the next chapter, we will see that this is indeed the case.
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The purpose of the Nix system is to support software deployment. In Part II we have
seen the low-level mechanisms necessary to support deployment. This chapter deals with
the higher-level mechanisms and actual policies that enable support for a wide range of
deployment scenarios. It also serves as validation for the Nix approach, since as we have
just seen in Section 6.8, Nix makes a number of assumptions about components that may
not always hold in practice. To discover to what extent these assumptions are valid, we
have applied Nix to the deployment of a large set of pre-existing software components, the
Nix Packages collection.

This chapter first discusses the Nix Packages collection and the design principles that
went into it, as these are instructive for the use of Nix in general.

Second, it shows concrete “high-level” deployment mechanisms. The nix-pull mecha-
nism is built on top of the low-level substitute mechanism to enable a variety of deployment
policies, such as channels and one-click installations. User environments are “pseudo-
components” that are constructed automatically by nix-env to activate components.

Third, Nix’s purely functional model creates some unique challenges in supporting the
evolution of software installations over time. For instance, users will want to periodi-
cally upgrade software components. In a binary deployment policy, it is undesirable if all
changed components must be re-downloaded in their entirety, particularly because in the
purely functional model all dependent components change as well. Section 7.5 shows that
this problem can be ameliorated using binary patching.

Finally, Section 7.6 compares Nix to other deployment systems, and to techniques that
might be used to implement deployment.

7.1. The Nix Packages collection

As we have seen in Chapter 2, the Nix Packages collection (Nixpkgs) is a set of Nix ex-
pressions that evaluate to derivations for a large set of pre-existing, third-party software
components. Figure 7.1 shows 278 components for which Nixpkgs contains expressions1.
For some of the components, Nixpkgs provides multiple versions. In general, we endeav-
our to standardise on a single version of a component within a given release of Nixpkgs,
but this is not always possible. For instance, several versions of the GNU C Compiler are
necessary because there is no single version of the compiler that can build all components.
Also, some library components have major revisions that are not backwards compatible
(e.g., versions 1 and 2 of the GUI library GTK). Of course, the great thing about the Nix
expression language is that it makes it so easy to deal with this kind of variability.

The components in Nixpkgs are a reasonable cross section of the universe of Unix soft-
ware components, though with a bias towards open source components. This is because

1This set is based on nixpkgs-0.9pre3415.
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a52dec acrobat-reader alsa-lib ant-blackdown ant-j2sdk apache-httpd aterm aterm-dynamic aterm-
java atk audiofile autoconf automake bash bibtex-tools binutils bison bittorrent blackdown boehm-
gc bsdiff bzip2 cdparanoia chmlib cil cksfv clisp coreutils cua-mode curl db4 diffutils docbook-
xml docbook-xml-ebnf docbook-xsl e2fsprogs eclipse-sdk ed emacs enscript esound exif expat
file findutils firefox flac flashplayer flex fontconfig freetype f-spot gail gawk gcc gcc-static GConf
gdk-pixbuf generator getopt gettext ghc ghostscript glib glibc gnet gnome-desktop gnome-icon-
theme gnome-keyring gnome-mime-data gnome-panel gnome-vfs gnugrep gnum4 gnumake gnu-
patch gnuplot gnused gnutar gperf gqview graphviz grub gtk+ gtkhtml gtkmozembed-sharp gtk-
sharp gtksourceview gtksourceview-sharp guile gwydion-dylan gzip happy harp haskell-mode he-
lium hello help2man hevea intltool iputils j2sdk jakarta-bcel jakarta-regexp jakarta-tomcat jclasslib
jdk jetty jikes jing-tools jjtraveler jre kaffe lame lcms lcov less libart_lgpl libbonobo libbonoboui
libcdaudio libdvdcss libdvdplay libdvdread libexif libglade libgnome libgnomecanvas libgnomeprint
libgnomeprintui libgnomeui libgphoto2 libgtkhtml libICE libIDL libjpeg libmad libogg libpng lib-
sigsegv libSM libtheora libtiff libtool libvorbis libwnck libX11 libXau libXaw libXext libXft libXi libX-
inerama libxml2 libXmu libXp libXpm libXrender libxslt libXt libXtrans libXv libXxf86vm lynx mesa
mingetty mjpegtools mktemp modutils mono monodevelop mono-dll-fixer monodoc mpeg2dec
MPlayer mplayerplug-in mysql mythtv nano nasm ncurses net-tools nix nmap nxml-mode ocaml
octave openssh openssl ORBit2 pan pango panoramixext par2cmdline patchelf pcre perl perl-
BerkeleyDB perl-DateManip perl-HTML-Parser perl-HTML-Tagset perl-HTML-Tree perl-libwww-
perl perl-LocaleGettext perl-TermReadKey perl-URI perl-XML-LibXML perl-XML-LibXML-Common
perl-XML-NamespaceSupport perl-XML-Parser perl-XML-SAX perl-XML-Simple perl-xmltv perl-
XML-Twig perl-XML-Writer pkgconfig popt postgresql postgresql-jdbc procps pygtk python qt
quake3demo rcs readline RealPlayer renderext rte ruby saxon saxonb screen scrollkeeper sdf2-
bundle SDL shadow shared-objects sqlite stdenv-linux strace strategoxt strategoxt-utils subversion
swig sylpheed sysvinit tetex texinfo thunderbird uml uml-utilities unzip ut2004demo util-linux valgrind
vim vlc wget which wxGTK wxPython xchm xextensions xf86vmext xfree86 xine-lib xine-ui xlib xpf
xproto xsel zapping zdelta zip zlib zoom zvbi

Figure 7.1.: Components in the Nix Packages collection

these components are most readily available, and allow third-party use and confirmation
of our results. However, some binary-only components are also included, such as Adobe
Reader, Real Player, Sun’s Java 2 SDK, and the Unreal Tournament 2004 Demo. How we
support such components is discussed in Section 7.1.4.

In terms of application areas, the set of components spans a wide spectrum:

• Fundamental tools and libraries (Glibc, GCC, Binutils, Bash, Coreutils, Make, ...).

• Other compilers and interpreters (Perl, Python, Mono, Sun’s Java 2 JDK, ...).

• GUI libraries (X11 client libraries, GTK, Qt, ...).

• Other libraries (Berkeley DB, libxml, SDL, and many more).

• Developer tools (Eclipse, Emacs, Valgrind, Subversion, Autoconf, Bison, ...).

• Non-developer tools (teTeX, NMap, ...)

• Servers (Apache httpd, PostgreSQL, MySQL, Jetty, ...).
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• End-user applications (Firefox, Xine, Gaim, UT2004, ...).

Likewise, several programming languages are represented, including C, C++, Java, C#,
Haskell, Perl, Python, and OCaml.

Nixpkgs does not contain any of these components itself; it only contains Nix expres-
sions and builders. The source or binary distribution files for the components are obtained
using fetchurl calls. This is a policy decision; it is perfectly possible to include these files
in the Nixpkgs distribution itself—but that would make a Nixpkgs download several hun-
dreds of MiBs large (not to mention that it might violate several licenses).

Nixpkgs is severely biased towards Linux-based systems. Many of the components in
Nixpkgs also build on other Unix-based operating systems, such as FreeBSD and Mac
OS X, but as we shall see in Section 7.1.2, the standard environment on Linux is far supe-
rior to those on other platforms as it produces components that do not require any external
(non-Nix) components to build or run. For instance, it uses its own copy of the GNU C
Library (Glibc). In addition, to build the standard environment on Linux, no external com-
ponents are needed, i.e., it is fully self-contained. Significantly, this means that Nixpkgs
on Linux is almost perfectly insulated from the “host” operating system. A component that
builds and runs on, say, Red Hat Enterprise Linux, will also build and run on SuSE Linux.

This bias towards Linux is not the result of any fundamental aspect of Nix, but rather is
triggered by two important considerations:

• The fundamental components of Linux systems2 are all open source. This makes
them much more useful for experimentation and adaptation than closed-source com-
ponents. In contrast, in Mac OS X, many fundamental components (such as the GUI
libraries) are closed source, which means that we cannot build them in the Nix store.

• Linux is highly component-based, much more than any other system, in the sense
that the components that make up a Linux system are all separately maintained,
built, and distributed. This is probably bad for users, as it creates a lack of vision
and coordination between the various parts of the system, but it is very good for
us. Consider by contrast FreeBSD, which is also open source, but only available
as a unified whole. That is, components such as the kernel, C library, compiler,
basic Unix tools, system administration tools, documentation, etc., are all part of a
single distribution. This means that we cannot easily take out, say, the C library, and
use it in our standard environment. Also, since Linux components must support a
wide variability in the environments in which they are used, they are typically quite
configurable. For instance, Glibc can be installed at a non-standard prefix. So Linux
is a truly component-based system in the sense of components in Section 3.1.

But again, other Unix systems are also supported, if in a somewhat less perfect state.
The open source nature of Linux enables us to explore an “ideal”, uncompromising envi-
ronment on Linux, where everything is deployed through Nix. On other systems, we have
to allow a certain measure of impurity. For instance, components must use system libraries
that are not built or deployed through Nix.

2Of course, we cannot really speak of Linux systems in general, as Linux is just a kernel. There is no single
component other than the kernel that is common to all Linux-based systems (not even Glibc!). However,
there is a fuzzy set of components that make up typical Linux environments, e.g., Glibc, GCC, Bash, GTK,
Qt, Gnome, KDE, and so on.
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So what about non-Unix systems, in particular Microsoft Windows? I claimed in the
introduction that Nix does not require any operating system specific extensions, such as
virtual file systems (as used by, e.g., Zero Install [112]). But Nix does make one Unix-
centric assumption: that paths abstract over storage devices. For binary deployment to
work, it is important that the store is in the same path between systems. That’s why we
more-or-less insist on using /nix/store. On Unix, this fixed path is not a problem, because
the directory /nix can be mounted on any physical device. But on Windows, if we use a
path such as C:\nix\store, we encode the device on which the store resides (e.g., C:) into
the store location. If another user uses D:\nix\store, e.g., because her D: has sufficient
free space, she cannot pull substitutes from a cache that assumes C:\nix\store. Thus we
run afoul of Windows’s CP/M heritage. (This does not apply to Cygwin [88] or similar
environments, which provide a Unix-like file system view on Windows.) However, it is a
little-known feature that Windows also provides mount points3, so this is in fact not a fatal
problem.

7.1.1. Principles

There are a number of design principles guiding the construction of the components in
Nixpkgs. The most important of these is the following:

⇒ “Static compositions are good.”

A static composition is one that is established at component build time. A dynamic com-
position is one that is established at runtime, i.e., after the components have been built and
deployed.

Suppose that we have a component that needs to call a program foo, provided by another
component. Dynamic composition, or late binding, means that we expect that at runtime,
we can find foo somewhere in the PATH environment variable, and so the composition
mechanism in C might be:

execlp("foo",args );

In a static composition, on the other hand, the path of foo is already known at build time:

execl("/nix/store/4sqiwbf0kj22...-foo-1.3.1/bin/foo",args );

Of course, the path /nix/store/4sqiwbf0kj22...-foo-1.3.1 would not be hard-coded into the
source. Rather, the foo component should be given as an input to the derivation, and the
path should be filled in by the preprocessor:

execl(FOO_PATH "/bin/foo",args );

So why is the latter better? The answer is that it gives a more exact closure and more
predictable runtime behaviour. The component will always be able to call foo, as it is
contained in the component’s closure and so is always present. With dynamic composition,
foo might be missing, or it might be a wrong version.

An important example of the preference of static composition over dynamic composition
is the style of linking used in Nixpkgs. Of course, the ultimate form of static composition is
static libraries (which are linked into the images of the executables that use them), but those
are inefficient. They waste disk space, memory, disk cache space, and memory cache lines.

3In fact, MS-DOS 3.1 already provided a mount-like command called JOIN.
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So are we doomed to the dynamic composition risks of the alternative: dynamic linking?
In fact, as we have seen previously, this is not the case with Unix (ELF) style dynamic
libraries, as these also support static compositions through the RPATH, which specifies a
search path for the dynamic linker.

For instance, the Hello component in Chapter 2 contains in its executable image a direct
reference to the path of Glibc. Likewise, the Subversion component contains the paths of
its OpenSSL, Expat, Berkeley DB, Zlib, and Glibc dependencies. Thus, the Subversion
program can never fail to find its dependencies, and it can never accidentally link to the
wrong libraries at runtime. The latter is actually a substantial risk; it happens quite often
that users (when they manually compile software) have different versions of libraries in
different places (e.g., /usr/lib and /usr/local/lib) and that the library used at runtime does not
match with what was detected at build time.

Of course, static composition is at odds with the desire to change compositions later
on. An advantage of dynamic linking over static linking is that dynamic libraries can be
replaced with “better” versions, e.g., to fix bugs; and all dependent applications will then
automatically use the new version. However, this provides two conflicting features:

• The ability to fix dependent applications all at once.

• The ability to break dependent applications all at once.

Clearly there is some tension between these two.
In the purely functional model, destructive upgrading is impossible by definition, and

so this “all at once” semantics is simply not available. To deploy a new version of some
shared component, it is necessary to redeploy Nix expressions of all installed components
that depend on it. This is expensive, but I feel that it is a worthwhile tradeoff against
correctness. Section 7.5 will show how this kind of upgrading can be done with reasonable
efficiency.

⇒ “Static compositions are good. Late static compositions are better.”

A late static composition is when composition is delayed to allow components to be
reused between compositions. Consider for instance the Mozilla Firefox component, a
web browser. Firefox can be extended through several means. For instance, plugins are
dynamically linked libraries that allow Firefox to handle additional MIME types, e.g.,
Macromedia Flash files through the Flash Player plugin. We can establish the composition
between Firefox and its plugins when we build Firefox. So its Nix expression will look
like this:

{stdenv, fetchurl, ..., plugins ? []}:

stdenv.mkDerivation { ...;

inherit plugins;

}

and its builder must somehow embed the paths of the plugins into the Firefox executable.
Thus the call

import .../firefox.nix { ...

plugins = [flashplayer realplayer MPlayer java];

}

171



7. Software Deployment

flashplayer

firefox

realplayer MPlayer java

Figure 7.2.: Static Firefox composition

firefox

firefoxWrapper

flashplayer realplayer MPlayer java

Figure 7.3.: Late static Firefox composi-
tion

yields the composition shown in Figure 7.2 (an arrow A→ B denotes that A is an input of
B). Now if we want to change the composition, e.g., add a new plugin, the entire Firefox
component must be rebuilt, which takes an hour or so on current hardware.

Figure 7.3 shows a better way through late static binding: the plugins are not composed
with the Firefox component directly, but rather the composition is delayed and established
in a Firefox wrapper component. A wrapper component is typically just a shell script that
sets some environment variables, then calls the original (wrapped) program. Thus, the
firefoxWrapper component consists entirely of a shell script generated by its builder4:

#! .../sh

export MOZ_PLUGIN_PATH=realplayer-path /lib/plugins:...

exec original-firefox-path /bin/firefox "$@"

Since the wrapper component can be generated very quickly, changing the composition
is very cheap.

Note that dynamic binding of the Firefox plugins requires the user to set the environment
variable MOZ_PLUGIN_PATH manually prior to invoking the Firefox program. In the late
static binding example, the variable is set by the wrapper script, which resides in the Nix
store and is therefore part of the closure installed in the user environment.

The terms (late) static binding and dynamic binding are orthogonal to the usual notions
of early binding and dynamic or late binding in component-based development [154]. They
are not about binding time relative to the deployment process, for either can be done at the
deployer side and on the client side. They are about whether the composition is controlled
(i.e., described by a self-contained store derivation that results in a self-contained closure)
or uncontrolled (i.e., performed by means outside of the scope of Nix).

⇒ “User environments are not a composition mechanism.”

User environments can be used as a composition mechanism, since they bring applica-
tions together in the PATH of the user, where they can find each other through dynamic
composition. But that is not how they should be used in general. Before we know it, users
will be given installation instructions like this: “Application foo needs application bar, so
you should run nix-env -i foo bar.” This is an abuse of user environments. If there is a
dependency, it should be expressed in a Nix expression that for instance builds a wrapper
around foo that allows it to find bar.

There are pragmatic exceptions. We do not currently have a good handle on crosscutting,
configurable dependencies. An example is the EDITOR environment variable, honoured
by many Unix programs, that specifies the editor preferred by the user. (For instance,

4Nixpkgs contains code to generate wrappers automatically.
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Subversion calls the program specified by this variable to allow the user to write commit
messages.) Wrapper scripts are not currently a feasible solution, since if the user wishes
to change his editor, he must rebuild all wrappers. Another example is fonts for X11
applications, which we want to configure globally; we don’t want to have a set of fonts as
a dependency of each X11 application.

The following is not so much a current principle as a hope for a better future:

⇒ “Scoped composition mechanisms are good.”

A mechanism is scoped if it limits visibility of symbols. For instance, if A imports B, and
B imports C, then the interface of C should not be visible to A (unless A explicitly imports
C). For very many composition mechanisms this is not the case. For instance, consider the
Subversion example again (Figure 2.9). Its Nix expression is a function that takes many
optional dependencies:

{ ..., bdbSupport ? false, httpServer ? false, ...

, openssl ? null, httpd ? null, db4 ? null, expat, zlib ? null

}:

Suppose that we call this function with httpServer = true and bdbSupport = false. Then
Subversion should not be built with Berkeley DB support. Unfortunately, there is a good
chance that it will be, even though the db4 derivation attribute is empty. The reason is
that Apache may be built with Berkeley DB support, and Subversion’s build process will
sneakily find Berkeley DB through Apache. For instance, Subversion’s configure script
asks the Apache subcomponent apr-util what compiler and linker flag it needs to properly
use apr-util, and gets the following (approximate) results:

$ apu-config --includes

-I/nix/store/h7yw7a257m1i...-db4-4.3.28/include

$ apu-config --ldflags

-L/nix/store/h7yw7a257m1i...-db4-4.3.28/lib

If Subversion’s configure script then dutifully adds these flags to its own list of compiler
and linker flags, it will find Berkeley DB despite it not having been passed in as an explicit
dependency.

This does not violate Nix’s property of preventing undeclared dependencies in a techni-
cal sense. After all, Berkeley DB is in the input closure of the Subversion build process,
since it is in the closure of the Apache output. But in a logical (or “moral”) sense, it is an
undeclared dependency.

Unscoped compositions mechanisms are not a Nix-specific problem; far from it. For
instance, every conscientious C programmer who cares about header file hygiene has ex-
perienced that the C header file mechanism is unscoped: if we have a C file that includes
header file X , and X in turn includes header file Y , then our file gets all the definitions in
Y . This makes it virtually impossible to validate whether the C file will compile under
all circumstances. Consider the case where X is included conditionally, but we uncondi-
tionally need the definitions from Y . (A result is that programmers tend to include more
dependencies than perhaps required, leading to increased build times [41].) Likewise, the
only way that we can validate whether the derivations involving Unix libraries produced
by a Nix function will build for all function parameters, is to build all possible derivations.
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A build can prove the presence of a dependency problem, not its absence, to paraphrase
Dijkstra [44].

⇒ “Fine-grained components are better than large-grained components.”

For the purpose of software deployment, fine-grained components are preferable to
large-grained components since the latter tend to lead to unnecessary dependencies and
thus to unnecessarily large closures. This was already observed in [43]. Large-grained
components also reduce software reuse [42], although that is not a central concern here.

Consider for example the Python interpreter package. This package contains not just an
interpreter for the Python language, but also many Python modules. Some of these are op-
tional, as they can only be built if certain dependencies are present, e.g., wrapper modules
for database libraries, the NCurses and Readline libraries, and so on. Thus, if we want to
build a Python instance that supports all possible uses, we have to make it dependent on
all these external libraries, even if most components that use Python don’t actually need
most or all of the optional functionality. Thus, the closure size of all components that use
Python increases.

In contrast, the Perl interpreter package has far fewer optional dependencies, and Perl
wrapper modules for the aforementioned modules are distributed as separate components.
For instance, support for the Berkeley DB 4 database is provided in a separate package.
Thus, a Perl component that does not require DB 4 support will not end up with the Berke-
ley DB 4 component and the Perl wrapper module in its closure.

In Nixpkgs, a strong preference is therefore given to small-grained components. For
instance, Nixpkgs initially used the “XFree86” package to provide X11 client libraries
for GUI applications. However, XFree86 is a large, monolithic distribution that contains
not only the X11 client libraries, but also the X11 server, drivers, and utilities. Further-
more, many client libraries are not actually needed by most X clients. So it was a dis-
tinct improvement when we were able to replace XFree86 with the X.org modular X li-
braries [182], which provide each individual library as a separately deployed entity. Thus,
each X application in Nixpkgs has in its closure only the libraries that it actually needs.

Of course, small-grained components also have a downside: they increase composition
effort. So one certainly should not feel compelled to make components as small as possible,
just to improve reuse. Rather, from the deployment perspective, the presence of external
dependencies should guide decomposition of large-grained components. Also, the quality
of small components is not necessarily better than that of large components [89].

7.1.2. The standard environment

Of all the components in Nixpkgs, the standard environment (stdenv) has a special signifi-
cance as it is used as an input by almost all other components. It is in essence an aggregate
of a number of components that are required by the build processes of almost all other
components. It is very inconvenient to specify them separately for each derivation that
uses them, and so they are combined into stdenv. The included components are:

• GCC, the GNU C Compiler, configured with C and C++ support. It has been patched
to help ensure purity, as described below in Section 7.1.3
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• GNU coreutils, which contains a few dozen standard Unix commands.

• GNU findutils, which provides find.

• GNU diffutils, which provides diff.

• The text manupulation tools GNU sed, GNU grep, and GNU awk.

• GNU tar, necessary for unpacking sources in TAR format.

• The compression utilities gzip and bzip2, necessary for uncompressing sources.

• GNU Make, an implementation of the make command.

• Bash, an implementation of the POSIX shell. It provides many extensions that the
standard environment does depend on.

• Patch, a tool for applying deltas produced by diff.

In addition, the standard environment provides a shell script called setup that initialises
the environment so that all these tools are in the builder’s path. Thus, the line

source $stdenv/setup

at the top of a builder suffices to bring them into scope.
Furthermore, the inputs specified in the attribute buildInputs are brought into scope,

where “scope” depends on the build tools being used. By default, the bin subdirectory of
components is added to PATH, the include subdirectory is added to the C compiler’s search
path, and the lib subdirectory is added to the linker’s search path. But this can be extended
through setup hooks that components can optionally provide. For instance, if Perl is in
scope, then all lib/site_perl subdirectories of components will be added to Perl’s module
search path. For instance, the attribute

buildInputs = [perl perlXMLWriter];

will cause the bin directory of the perl derivation’s output to be added to PATH, and the
lib/site_perl directory of perlXMLWriter (the Perl module XML::Writer) to be added to Perl’s
search path.

The generic builder The setup script also provides the generic builder, which is a shell
function genericBuild that can automatically build many software components. An exam-
ple of its use was shown in Figure 2.10. A full description of the generic builder and the
ways in which it can be customised is given in the Nix manual [161], and its details are not
relevant here. Briefly, the generic builder has a number of phases:

• The unpack phase unpacks the sources denoted by the attribute src (which may be a
list). The current directory is switched to the top-level directory of the source tree.

• The patch phase applies the patches denoted by the attribute patches. This is useful
to maintain Nixpkgs-specific modifications to a component’s source.
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• The configure phase brings the source into a buildable state by running the compo-
nent’s configure script with the argument --prefix=$out.

• The build phase builds the component by running make.

• The check phase runs make check to perform any tests (such as unit tests) included
in the component.

• The install phase installs the component into the store path denoted by the environ-
ment variable out by running make install.

Each of these phases can be overridden by the caller to support components whose build
system does not follow the general pattern. In addition, the default implementations of
the phases can be customised in many ways (e.g., additional flags can be specified for the
configure and make invocations).

Logging A builder can write arbitrary text to its standard output and standard error file
descriptors [152]. Nix combines these streams and writes the text to its own standard error,
as well as to a per-derivation log file in the directory /nix/var/nix/log/drvs.

A practical problem in Unix software development that seems to become more painful
with each passing year is the log output generated by build processes. Gone are the days
that an invocation of make only printed easily-understood lines such as

cc -c foo.c

and if anything else appeared, it was a relevant error message. The use of tools such as
Automake and Libtool [172] and Pkgconfig [75] routinely leads to single Make actions that
are thousands of characters and dozens of lines long, and in which it is almost impossible to
see what is being compiled and how. Also, the size of the log output can be overwhelming:
the Firefox builder produces a log of 6.4 MiB. This makes it often difficult to pinpoint the
cause of a build failure.

For this reason, the generic builder produces structured or nested log output. This means
that the log output becomes an ordered tree of log lines (i.e., the children of each node are
ordered) rather than a list. For instance, the output of each phase of the generic builder is a
subtree of the root. Furthermore, I patched GNU Make to produce nested output. The log
messages of recursive invocations of Make form a subtree, and the output of each Make
action is placed in a clearly labelled subtree.

Subtrees are delimited by ECMA-48 control sequences [53]. This allows nesting to be
easily retro-fitted onto “legacy” tools. For instance, the byte sequence 1b 5b 33 70 (in
hexadecimal) or "\e[3p" (as a C string) begins a subtree with priority 3 (higher priority
numbers mean that the subtree contains less important information), while the byte se-
quence 1b 5b 71 or "\e[q" ends a subtree. The sequence 1b 5b is the ECMA-48 Control
Sequence Introducer (CSI), which according to the standard must be followed by any num-
ber of Parameter Bytes in the hexadecimal range 30–3f, and a single Final Byte in the range
40–7e. An ECMA-48 conformant terminal will not display the control sequences used for
log nesting since it does not know how to interpret them. Thus, when the log output is
echoed to a terminal, it appears as if no control sequences are present.
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<logfile>

<nest><head>unpacking...</head>

<line>...</line> ...

</nest>

<nest><head>building...</head>

...

<nest><head>Entering directory `src'</head>

<nest><head>building foo.o</head>

<line>gcc -o foo.o -c foo.c</line>

</nest>

</nest>

</nest>

</logfile>

Figure 7.4.: Structured log output converted to XML

The structured log output (containing escape sequences) can be processed in a variety
of ways. One such way is the tool log2xml (included in Nix), which converts a log file
into an XML file [20], an example of which is shown in Figure 7.4. This XML file can
then be transformed into something useful using, e.g., XSLT [27]. For instance, there is
an XSL stylesheet log2html that produces a nicely formatted HTML page of the log, using
JavaScript and Dynamic HTML to allow parts of the tree to be collapsed or expanded. Only
subtrees that contain error messages are expanded by default, allowing the developer to find
relevant parts of the log easily. An example produced by the Nix build farm (Chapter 8) is
shown in Figure 7.5.

Bootstrapping the standard environment The standard environment is used by the
build processes of almost all other components in Nixpkgs, which raises the question:
how do we build the standard environment itself? To build the components in stdenv, we
need a C compiler, standard Unix tools, a shell, and so on. In other words, we need a
stdenv to build stdenv. Thus, we have a classic bootstrapping problem.

The approach initially used, and still used to build stdenv on all platforms except stdenv-
linux, is to build stdenv using the “native” tools of the system, e.g., the C compiler in
/usr/bin/gcc. This is of course impure: it depends on inputs outside of Nix’s control. Thus,
a build of stdenv may not always succeed (e.g., if the C compiler is missing). However,
once stdenv has been built, we can build components with no outside interference. The
build process of stdenv has several stages:

• First a trivial initial standard environment is built (using /bin/sh for the builder) that
constructs a setup script that sets the PATH to /usr/bin, etc.

• The initial stdenv is used to build GCC.

• A second stdenv is then built, identical to the first one, except that GCC is added to
the PATH.

• This stdenv is used to build all other stdenv components.
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Figure 7.5.: Structured log output

• From these components the final stdenv is constructed. It has a “pure” PATH.

The stdenv thus produced has a compiler and linker that produces binaries that link
against the system’s C library. This is still impure, but on many systems we do not have
the ability to build our own copy of the C library. If we do, as on Linux, the build process
has a few extra steps. We first use the trivial stdenv to build the C library. Then we build
GCC such that it links dynamically against the C library, since we want all programs in
the final stdenv to use our own C library instead of the system C library. A stdenv is then
constructed that has environment variables set up so that the compiler and linker use our
own C library.

The ideal however is a completely pure stdenv: one that requires no external components
to build and run, and produces components that need no external components to run. Such
a stdenv has been implemented on i686-linux. Bootstrap tools such as a shell, compiler,
and so on, are provided as “sources”, or more properly, atoms (see Section 5.3). These
programs are all statically linked executables so that they do not need external components.
Roughly, the builder for stdenv looks like this:

derivation {

name = "stdenv-linux";

system = "i686-linux";

builder = ./bash; # statically linked Bash

args = [./builder.sh]; # build script

tar = ./tar; # statically linked GNU Tar

bzip2 = ./bzip2; # statically linked BZip2

tools = ./tools.tar.bz2; # everything else, statically linked

}
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Thus, the statically linked executables for Bash et al. are part of the Nixpkgs source tree.
(In reality, tools.tar.bz2 is downloaded from the Internet, like sources obtained through
fetchurl, since it is rather large. Therefore, a statically linked curl download program is
also included.) These executables have of course been built themselves in some way, but
they have been “re-injected” into the build process as sources—things that, as far as Nix
can see, have not been derived.

Removing unnecessary dependencies Since we prefer static compositions over dy-
namic compositions, the standard environment tries to ensure that any executables pro-
duced by it are statically composed. That means that if an ELF (Unix) executable or
library [160] refers to another library, the directory of the latter must appear in the RPATH
of the former. To ensure that this is the case, stdenv’s linker adds the flag -rpath path
to the linker flags for every library directory mentioned through -L flags. Thus, a linker
invocation

$ ld ... -L/nix/store/abcd...-foo/lib -lfoo

is transformed into

$ ld ... -L/nix/store/abcd...-foo/lib -lfoo \

-rpath /nix/store/abcd...-foo/lib

However, we do not know in advance whether library foo is actually used by the linker.
Regardless, the path /nix/store/abcd...-foo/lib is added to the RPATH of the output. Thus,
the component gets a retained but unnecessary dependency on /nix/store/abcd...-foo.

For this reason, the standard environment after the install phase applies a tool called
patchelf to all ELF executables and libraries in the output. This utility has the ability to
“shrink” the RPATH of arbitrary ELF executables, i.e., remove any directories from the
RPATH that do not contain any referenced library. It is effective in preventing many unnec-
essary retained dependencies. For instance, it prevents Hello’s unnecessary dependency on
GCC that we saw back on page 41.

7.1.3. Ensuring purity

If we build derivations in an environment that contains software components that are not
under Nix control, there is a danger of impurity since the builder might make use of inputs
outside of the Nix store. This is the main threat to the validity of the Nix approach. For
instance, there is no way that we can prevent a builder from calling /usr/bin/gcc. Thus,
while Nix’s hashing scheme ensures isolation between components in the store, it does not
ensure isolation between components in the store on the one hand and component outside
the store on the other hand.

However, we can use some “countermeasures” to reduce the risk of “infection” by non-
Nix components. One such countermeasure—the clearing of the environment—is built
into Nix. Nixpkgs implements a range of additional measures. These include:

• The GNU C Library on i686-linux does not have any default search path for libraries
(such as /usr/lib).
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• GCC has been patched not to search for header files in standard locations such as
/usr/include.

• The linker, ld, has been patched not to search for libraries in standard locations such
as /usr/lib.

• In addition, GCC and ld ignore or reject any command-line arguments that refer to a
non-store location (the only exception being the builder’s temporary directory). For
instance, a GCC flag like -I/opt/include is ignored; a ld argument like /usr/lib/crt1.o
causes a fatal error. In practice, these measures prevent configure scripts, which
frequently scan for optional dependencies in a variety of “well-known” system di-
rectories, from finding dependencies outside of the store.

It should be noted that the threat of impurity described here can only occur if Nix is used
in a “hosted” environment, i.e., under an existing operating system that does not use Nix
for its component storage. If all components are deployed through Nix, that is, if we have
a pure environment, then this danger disappears. This leads to the as-yet unrealised ideal
of a “NixOS,” a fully Nix-based Unix distribution (discussed in Section 11.1).

7.1.4. Supporting third-party binary components

Most of the components in Nixpkgs are open source or free software components, i.e.,
their builders compile them from source. However, it is possible to deploy third-party
closed-source components as well, provided that the Nix expression for the component
can automatically obtain a binary distribution from somewhere (e.g., through fetchurl).
The builder for such a component is in a way “trivial”: it does not compile anything; it
essentially just unpacks the input binary distribution and copies it to out. Note that this
is perfectly fine: Nix requires no semantics from builders other than that they produce an
FSO in the path denoted by out.

Of course, many closed-source components do not come in a form that allows us to write
a builder that installs them, since they have their own (frequently interactive) installers.
Sometimes we can trick our way past this. Sun’s Java SDK has an interactive installer
that requires the user to approve a license by pressing “Y”. By simply piping that character
into the installer process, the installer becomes non-interactive. Unfortunately we cannot
expect such tricks to be possible in general.

Even if we can unpack the component, there is the issue of the component’s dependen-
cies. It may have runtime dependencies on external programs or libraries. However, con-
trary to open source components, distributors of closed-source components cannot hard-
code paths to dependencies into programs since they cannot make assumptions about the
target environment where the component will run. Thus, paths to dependencies are usu-
ally configurable through environment variables. These dependencies can therefore be met
through late static composition using wrapper scripts, as described above.

An exception on Linux is the dependency on the GNU C library, and possibly some other
well-known libraries in /lib and /usr/lib. Worst of all is the path of the ELF dynamic linker,
which is hard-coded into every ELF executable. When a dynamically linked executable is
invoked on Linux, the kernel will load the dynamic linker specified by the executable. The
dynamic linker is almost always /lib/ld-linux.so.2. This is an impure external dependency,
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and should not be used. Rather, the ld-linux.so of Nixpkgs’s Glibc should be used. But
there is no way to accomplish this through environment variables5.

The utility patchelf, which we already saw above for shrinking RPATHs, can also deal
with this situation. It can change the dynamic linker path embedded in an ELF executable.
Technically speaking, this is done by changing the contents of the INTERP segment of the
executable, which specifies the dynamic linker (or “ELF interpreter”) [160]. We have suc-
cessfully deployed applications such as Sun’s JDK 5.0, Eclipse and Adobe Reader in this
way. The purity of the resulting components has been validated in the pure environment
provided by NixOS (discussed in Section 11.1).

7.1.5. Experience

The main reason for the development of Nixpkgs was to have a substantial body of real
world software components that could serve as a validation for the Nix approach. A par-
ticularly important goal was to see to what extent the assumptions from Section 6.8 hold.
Did these assumptions hold in practice?

Let’s evaluate the assumptions one by one:

• “The component can be built with and installed at an arbitrary prefix”: this assump-
tion holds for virtually all components, since in general they cannot assume that a
single fixed path is acceptable to all users. A handful of components did require
a fixed location, but these were easily patched. Also, some groups of components
require a shared prefix, i.e., they want to be installed in the same location. This
was true for some components in the modular X.org tree [182]. No closed-source
components were encountered that have a fixed prefix.

• “The component does not expect that its dependencies are installed at certain fixed
locations, and the locations of the dependencies can instead be specified at build
or runtime”: again, since most components cannot assume that users have installed
dependencies at a fixed prefix, this assumption holds almost always. An exception is
fixed dependencies on /bin/sh. This path is very widely hard-coded into shell scripts
due to the “hash-bang” convention [152] (i.e., specifying the script’s interpreter on
the first line of the script). This is a source of impurity.

As a result, it is not clear whether a pure Nix environment can dispense with provid-
ing /bin/sh unless a substantial effort is undertaken to patch components. (Probably
most of this patching can be performed automatically, e.g., after the unpack phase in
the generic builder.)

• “The component can be built automatically, i.e., with no user interaction whatso-
ever”: no decent software component requires an interactive build process, as that
flies in the face of good software engineering practice (e.g., preventing the use of a
build farm as in Chapter 8). But as mentioned above, some closed-source compo-
nents provide only interactive installers.

5It is however possible to invoke the dynamic linker directly, specifying the program as an argument, e.g.,
/nix/store/72by2iw5wd8i...-glibc-2.3.5/lib/ld-linux.so.2 acroread. But this changes the calling convention of the
program.
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• “The build process of the component is essentially pure”. There are two major
sources of impurity. First, the component uses file system inputs that are not explic-
itly specified as inputs, i.e., are not in the set inputs in Figure 5.11. These impurities
can in turn be decomposed into undeclared dependencies on FSOs inside the Nix
store and outside the Nix store. The former has not been observed at all. Thus, iso-
lation works very well. This is good news for a pure Nix-based environment. The
latter does occur, as shown above, and cannot be prevented in general; though, as we
have seen in Section 7.1.3, the threat can be mitigated.

The second source of impurity is a reliance on non-file system information sources,
such as the system time or the network. In fact, only the system time is a real pos-
sibility; the network is seldom used by builders. However, virtually all components
in practice are pure in the sense of the equivalence relations in Chapter 6. That is, if
there are impurities, they do not affect the operation of the component in an observ-
able way. One exception was observed: static libraries on Mac OS X (page 163).

• “The component does not need to be modified after it has been built, e.g., at run-
time”: this assumption holds for almost all Unix components, since in a multi-user
environment a component cannot assume to have write permission to itself. Most
development components do not maintain state, and Unix application components
maintain state in the user’s home directory. A notable exception is IBM’s Eclipse
development environment, which in some pre-releases required write permission to
its own prefix. Unless such components are patched to write state to another loca-
tion, they will not work in Nix. But such problems generally will be fixed, since
requiring write permission is just as unacceptable to other deployment systems such
as RPM.

It is possible that we will encounter problems with system components (which are
underrepresented currently) that maintain global, as opposed to user-specific, state.
For instance, the password maintenance utility passwd might (hypothetically) re-
quire that the password file is stored under $out/etc/passwd.

• “The component has no environment dependencies”: we have encountered no prob-
lems in practice with this assumption. Again, development components tend to have
no external state, and applications keep state in the user’s home directory, which they
automatically initialise on first use. Thus, no special actions are necessary to make
these components work, other than assuring the presence of their closures in the file
system.

But there certainly are counter-examples. A web server component might require
the existence of a special user account under which the component is to execute.
However, such environment dependencies are usually distinct from the component
as a code-level entity. For instance, the same web server component might be used
for several actual servers on the same machine, running under different user accounts
as specified by the servers’ respective configuration files. We will deal with this type
of state in Chapter 9.

• “Retained dependencies can be found in the component through scanning”: we have
not encountered a single instance of “pointer hiding”. Of course, that does not mean
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that it cannot happen; it is trivial to construct a component that hides references to
retained dependencies. But Nixpkgs provides strong evidence that it does not occur
in practice.

• “Hash rewriting does not change the semantics of the component” (intensional
model only): the prototype implementation of the intensional model was applied to
a number of large closures, including Firefox and MonoDevelop, a C#-based graph-
ical development environment. The experiment included equivalence class collision
resolution as a result of combining builds from several users. No failures were en-
countered in any component6.

In summary, we can conclude the following:

• The hashing scheme presents no problems and works very well.

• Fixed dependencies on /bin/sh and a handful of other paths are a source of impurity.
This impurity does not occur in a pure Nix environment, but in that case components
need to be adapted to build and work at all. In impure environments, the counter-
measures of Section 7.1.3 prevent most “large” dependencies, but cannot prevent
direct calls to external paths. Thus vigilance is necessary; build logs for third-party
components should be inspected to verify that no external tools are being used.

There is a caveat to these results: since the components were not selected randomly,
but rather “on-demand” to suit user needs, there may be a selection bias. For instance,
development components may be over-represented. Also, since users are generally more
inclined to add small components than large components or entire systems consisting of
many components (e.g., KDE), there is a bias towards smaller components. Nevertheless,
large components (such as Firefox) and systems (such as a substantial part of Gnome) have
been added.

Enforcing purity Is it possible to enforce purity? We cannot do this in general, but
operating system-specific tricks, or even extensions, might be employed for this purpose
in the future. For instance, impurity due to non-Nix components can be prevented using
appropriate access control rights that prevent the builder from accessing them in the first
place.

Impurity due to the system time can be prevented by disallowing builders from querying
the current time or timestamps on files. This can be accomplished by modifying operating
system calls to not return this information (e.g., always return a timestamp of 0). However,
impurity may even be present in the instruction set of the processor. For example, the Intel
Pentium has an instruction RDTSC to read the number of clock ticks elapsed since the last
restart [37]. However, this instruction can be disabled by the kernel.

6And this is literally a historical footnote: in [52], we wrote that “patching files [by rewriting hashes] is unlikely
to work in general, e.g., due to internal checksums on files being invalidated in the process.” It turns out that
this assessment was too pessimistic.
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7.2. User environments

Section 2.3 introduced user environments as the mechanism through which end-user com-
ponents (i.e., applications) are activated. They are components that are automatically gen-
erated by nix-env to activate other components. There are many ways through which a
component can be activated, i.e., made available to the user. The sets of symlinks to pro-
grams in bin directories of components shown in Figure 2.11 are just one example of how
user environments can be implemented. One can imagine several other policies as to how
components can be activated:

• On Windows and similar GUI environments, components can be activated by adding
them to the Start menu. Thus, a user environment would consist of a hierarchy of
*.lnk files (on Windows) or *.desktop files (on KDE) that specify the location of a
program, its icon, associated media types, and so on.

• Similarly, the objects on the desktop in many GUI environments can be synthesised.

However, even in the Unix user environments described in Section 2.3, there are a num-
ber of policy decisions. One is the question of what constituent parts of installed compo-
nents are placed in the user environment, i.e., to which files in the installed components we
create symlinks. There are several options.

• Everything. The user environment is a hierarchy of symlinks that mirrors the union
of the directory hierarchies of the installed components. This is what the current
implementation does. However, this approach creates very large user environments,
often consisting of hundreds or even thousands of symlinks. The creation of such
user environments can take several seconds, which is too long. The disk space con-
sumption may also be considerable, depending on the implementation details of the
underlying file system.

• Programs only, i.e., the executables in the bin subdirectory of each installed com-
ponent. This is much more efficient. However, components typically also have
non-code artifacts that we wish to activate, such as documentation. For instance,
the man subdirectory of each component may contain Unix manual pages in Troff
format. Users will expect those manual pages to be found by the man command.

• Allow the user to specify which parts of installed components should be symlinked.
This requires an extension to the nix-env installation syntax, e.g.,

$ nix-env -i firefox --activate bin,man

Another issue is how to deal with collisions, which occur when two installed compo-
nents have one or more files with identical relative paths. Such collisions are detected by
the builder of the user environment component. There are several possibilities:

• The builder can print an error message and abort, thus causing the nix-env operation
to fail. In this case no new generation is produced and the current generation symlink
does not change.
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• If the collision is caused by multiple versions of a component, the builder can give
precedence to the newest version (under some ordering of versions). Also, the older
version could be made available under a different name. If we have Firefox 1.0.5
and 1.0.6 installed concurrently in a user environment, the symlink to the former
might be called bin/firefox-1.0.5, and the latter bin/firefox.

• The builder can give precedence to the component that was added most recently.
(Currently, however, the builder does not have this information.)

• All conflicting files can be renamed, e.g., to bin/firefox-1.0.5 and bin/firefox-1.0.6.

These are all policy decisions regarding the computation of the user environment. The
current Nix implementation does not have an easy mechanism to change the built-in policy
(other than editing the user environment builder, a simple Perl script). However, it would
be fairly trivial to add an option for users to override the user environment builder, thus
allowing different policies.

7.3. Binary deployment

As we have seen previously, Nix (through Nix expressions) is at its core a source deploy-
ment system, but the substitute mechanism (Section 5.5.3) allows binary deployment as
an optimisation of source deployment, yielding a transparent source/binary deployment
model (Section 2.6). But the substitute mechanism is just that—a mechanism. It does not
implement any particular binary deployment method. It just consists of database registra-
tions of the fact that an FSO for a certain store path can be produced by executing some
program.

This section shows a specific implementation of binary deployment using the substitute
mechanism. It consists of three fairly simple tools:

• nix-push, executed on the deployer’s side, which computes the closure of a given
store path, packs the store paths in the closure into archives, and places them on a
web server.

• nix-pull, executed on the clients, which obtains information about the archives avail-
able on a web server, and registers the program download-using-manifests as a sub-
stitute for each corresponding store path.

• download-using-manifests, called by the substitute function (Figure 5.15), which
downloads and unpacks the requested FSO.

We shall now look at the various parts in detail. Suppose that we have a Nix expression
foo.nix that evaluates to a set of store derivations that we want to build and put on a web
server http://server/nix-cache from where the binaries can be fetched by clients. We can do
this as follows:

$ nix-push \

http://server/nix-cache \

http://server/nix-cache/MANIFEST \

$(nix-instantiate ./foo.nix)
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Recall that nix-instantiate translates a Nix expression to store derivations, and prints out
their store paths; and that the shell syntax $(...) causes those paths to be passed as argu-
ments to nix-push. The first URL is the location to which the archives should be uploaded.
The second URL is the location to which the manifest of the binary deployment is up-
loaded. The manifest (as we briefly saw in Section 2.6) contains information about every
uploaded archive.

Given a call nix-push archiveURL manifestURL paths, the steps that nix-push performs
are as follows:

• The closure of the set paths is computed using the command nix-store -qR --include-
outputs paths. As we saw on page 42, this performs a combined source/binary
deployment, i.e., it includes the store derivations and their inputSrcs, but also the
outputs of the store derivations. Each derivation is also built.

• For each path p in the closure, the canonical serialisation serialise(readPath(p))
(Section 5.2.1) is compressed using the bzip2 compression program. This archive
is uploaded to the URL archiveURL+ "/"+printHash32(hashsha256(c))+ ".nar.bz2",
where c is the compressed serialisation (this means that archives are stored un-
der content-addressable names). The archive is uploaded using an HTTP PUT re-
quest [57], but only if a HEAD request reveals that the archive does not already exist
on the server7. This makes it useful to use the same archiveURL between nix-push
operations for multiple software releases, since common subpaths will be uploaded
and stored only once.

• A manifest is then created. For each path p that we have packed into a compressed
archive c and uploaded to url, it contains an entry of the following form:

{

StorePath: p
NarURL: url
Hash: sha256:printHash32(hashsha256(c))
NarHash: sha256:printHash32(hashsha256(serialise(readPath(p))))
Size: |c|
References: references[p]
Deriver: deriver[p]

}

The meaning of such an entry is that if we want to produce a store path p, we can
do so by downloading a compressed serialisation from url and unpacking it into p.
The field Hash is the hash of the compressed serialisation of p, while NarHash is
the hash of the uncompressed serialisation of p. The former allows clients to verify
that the downloaded archive has not been modified, while the latter will be of use in
the binary patch deployment scheme described in Section 7.5. The References and
Deriver fields are omitted if their corresponding database entries are equal to ε .

7The actual nix-push program takes an additional URL to be used for the HEAD requests. This allows the PUT
and HEAD requests to use different URLs. E.g., the first can refer to a CGI script [124] that handles uploads,
and the second is the actual location from which archives can be downloaded.

186



7.4. Deployment policies

• The manifest is uploaded using a PUT request to manifestURL.

On the client side, the availability of the pre-built binaries created by nix-push can be
registered using nix-pull manifestURL, e.g.,

$ nix-pull http://server/nix-cache/MANIFEST

The command nix-pull downloads the manifest and stores it in the directory /nix/var/nix/-
manifests. For each store path entry p in the manifest, a substitute is registered using the
command nix-store --register-substitutes (page 119). Note that this also sets the references
database entry for p so that the closure invariant can be maintained. The substitute program
is download-using-manifests, and there are no declared command-line arguments. But
recall from Figure 5.15 that the substitute program is always called with p as command-
line argument. Since all other necessary information for the download (such as the URL)
is stored in the manifests in /nix/var/nix/manifests, no further command-line arguments are
necessary.

The script download-using-manifests, when it is called by the function substitute in Fig-
ure 5.15 to produce a path p, reads all manifests in /nix/var/nix/manifests. Note that there
may be multiple manifest entries for p. The script picks one arbitrarily. (An alternative
implementation is to try each until one succeeds.) It downloads the archive from the URL
specified by the NarURL field of the selected manifest entry, uncompresses it, deserialises
it to path p, and checks that the cryptographic hash specified in the NarHash field of the
entry matches the actual hash. In Section 7.5, we will see an extension to this script that
supports binary patching.

7.4. Deployment policies

Since Nix provides basic mechanisms to support deployment, it is fairly easy to define
all sorts of specific deployment policies. In general, a deployment policy consists of two
elements:

• A way to get Nix expressions to the clients; this defines source deployment.

• A way to get binaries to the clients as an optimisation of source deployment through
substitutes; this defines binary deployment.

However, either can be omitted. Clearly, if the latter is omitted, we have pure source de-
ployment. If the former is omitted, clients cannot install through Nix expressions (since
they don’t have them), but they can install store paths directly, as we have seen in Sec-
tion 5.5, e.g.,

$ nix-env -i /nix/store/1ja1w63wbk5q...-hello-2.1.1.drv

or

$ nix-env -i /nix/store/bwacc7a5c5n3...-hello-2.1.1

This section describes a number of concrete policies that have been implemented.
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Direct download The most primitive deployment mechanism is to have users download
Nix expressions, e.g.,

$ wget http://example.org/nixpkgs.tar.bz2

$ tar xvfj nixpkgs.tar.bz2

$ nix-env -f ./nixpkgs/pkgs/system/all-packages.nix -i ...

Of course, this source deployment policy can be made into a binary deployment policy by
having clients perform a nix-pull of a manifest corresponding to the set of Nix expressions.

While this policy is primitive, it is quite useful in many environments. For instance, it
can be used in many typical networked environments to automatically distribute compo-
nents to (say) all desktop machines. The clients could periodically execute the displayed
command sequences (a pull model), or the commands could be executed automatically by
remote login from a script executed centrally by the system administrator (a push model).

Distribution through a version management system A slight modification of the pre-
vious scheme is to obtain the Nix expressions from a version management repository in-
stead of a direct download. The following obtains a working copy of a set of Nix expres-
sions from a Subversion repository:

$ svn co http://example.org/nixpkgs

$ nix-env -f ./nixpkgs/pkgs/system/all-packages.nix -i ...

The command svn up can then be used to keep the Nix expressions up to date.
An advantage of this policy is that it makes it easy to maintain local modifications to

the set of Nix expressions. The version management tool ensures that updates from the
repository are merged with local modifications.

Again, nix-pull can be used to turn this into a binary deployment scheme. However, with
local modifications, the deployer can no longer ensure that the expressions that the client
installs have been pre-built. Of course, that is the whole point of transparent source/binary
deployment: it enables binary deployment to “degrade” automatically to source deploy-
ment.

Channels Channels are a convenient way to keep a set of software components up to
date. A channel is a URL u such that there is an archive containing Nix expressions at
u+ "/nixexprs.tar.bz2" and a manifest at u+ "/MANIFEST". The archive file nixexprs.tar.bz2
must unpack to a single directory that must contain (at the very least) a Nix expression de-
fault.nix. The derivations produced by the evaluation of that expression are the derivations
provided by the channel. The manifest provides optional binary deployment.

Channels are managed on the client side through a simple tool called nix-channel. Users
can “subscribe” to a channel:

$ nix-channel --add http://example.org/foo-channel

This causes the specified URL to be added to a list of channel URLs maintained per user.
Next, the client can obtain the latest Nix expressions and manifests from all subscribed
channels:

$ nix-channel --update
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The update operation, for each subscribed channel u, performs a nix-pull on u +
"/MANIFEST", and downloads and unpacks u+ "/nixexprs.tar.bz2". It then makes the union
of the derivations in all Nix expressions the default for nix-env operations (through the
command nix-env -I). So after the update, components can be installed from the channels
using nix-env:

$ nix-env -i foo

Thus, a typical usage scenario is the following command sequence:

$ nix-channel --update

$ nix-env -u '*'

which updates all components in the user’s profile to the latest versions available from the
subscribed channels. A typical higher-level policy is to perform this sequence automati-
cally at certain times (e.g., from a Unix cron job).

One-click installations A one-click installation is a convenient mechanism to install a
specific component. For many users it is the easiest way to install a component. One-
click installations are based on Nix packages, which are plain-text files that contain just
the following bits of information about a component:

• Its symbolic name.

• The store path of the store derivation.

• The store path of the output, i.e., the output field of the store derivation.

• Its platform identifier (e.g., i686-linux) to prevent the component from being installed
on inappropriate systems.

• The URL of a manifest.

An example of the full contents of a package file is the following:

NIXPKG1

http://nix.cs.uu.nl/dist/nix/nixpkgs-0.9pre3530/MANIFEST

firefox-1.0.6

i686-linux

/nix/store/cbqkqc039srl48yswgzx1gs5ywnkbidp-firefox-1.0.6.drv

/nix/store/66zq88a8g36kmjl6w0nm5lfi2rvjj566-firefox-1.0.6

Nix packages are intended to be associated in web browsers (through the MIME media
type [74] application/nix-package) with the package installer program nix-install-package.
Thus, by clicking on links in web pages to packages, the package is installed (hence the
term “one-click installation”). An example was shown in Figure 2.14 (page 44). The
installer nix-install-package may one day be a fancy graphical user interface showing in-
stallation progress, but is currently just a simple script that performs the following actions:

• It asks the user to confirm the installation.

• It performs a nix-pull on the manifest.
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• It installs the store path of the derivation output p directly by executing nix-env -i p.

This suffices to perform a binary installation of the component and all its runtime depen-
dencies. A slight variation install the store path of the store derivation, rather than the
output. In that case, source deployment is also possible.

Note that this deployment method completely bypasses Nix expressions on the client
side. The store path p is installed directly. The closure of p follows from the References
fields in the manifest. If the Nix expression language changes in incompatible ways, the
users of Nix packages are not affected. This demonstrates one of the advantages of sepa-
rating the Nix build model into high-level Nix expressions and low-level store operations.

7.5. Patch deployment

As we have seen, Nix has a purely functional deployment model. This provides impor-
tant advantages, such as side-by-side deployment of versions and variants, safe upgrades,
the ability to roll back, and so on. However, there is a cost in that the purely functional
model makes it hard to efficiently deploy upgrades to clients. In particular, upgrades to
“fundamental” dependencies are expensive.

Consider the dependency graph of Firefox shown in Figure 1.5 (page 10). The compo-
nent at the top of the graph, used by almost all other components, is the GNU C Library
(Glibc). Suppose that we discover a bug in Glibc, and wish to deploy a new version. The
most straightforward way to do this is to update the Nix expression in Nixpkgs that builds
Glibc to use the new version, and rebuild and reinstall the top-level components (e.g., Fire-
fox) that depend on it. That is, we deploy to the clients a new set of Nix expressions for all
installed components, and the client can then simply perform

$ nix-env -i firefox

or

$ nix-env -u '*' --leq

to upgrade all installed components with versions that are higher or equal (e.g., simply
built with newer dependencies).

But this is expensive! Recall from Figure 2.3 (page 22) that a change to an input (such
as Glibc) propagates through the dependency graph. This has two effects. First, all af-
fected components must be rebuilt. This is exactly what we want, since the change to the
dependencies may of course affect the result of the builds. This is the case even if inter-
faces haven’t changed. Consider statically linked libraries, smart cross-module inlining,
changes to the compiler affecting the binary interface, and so on. By far the easiest way to
produce outputs that are consistent with the Nix expressions is to build them from scratch.
Thanks to transparent source/binary deployment, this rebuild needs to be done only on the
distributor side; the clients just do an appropriate nix-pull.

Unfortunately, the second effect is that all affected components must be re-deployed
to the clients, i.e., the clients must download and install each affected component. This
creates a huge scalability problem, which this section attempts to address. If we want to
deploy a 100-byte bug fix to Glibc, almost all components in the system must be down-
loaded again, since at the very least the RPATHs of dependent binaries will have changed
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to point at the new Glibc. Depending on network characteristics, this can take many hours
even on fast connections. Note that this is much worse than the first effect (having to re-
build the components), since that can be done centralised and only needs to be done once.
The re-deployment, on the other hand, must be done for each client.

This shows the price to be paid for a purely functional deployment model. By contrast,
consider deployment models that use destructive upgrading, i.e., that overwrite the files of
components with newer versions. For instance, in RPM [62], we just install a new Glibc
RPM package that overwrites the old one.

This however prevents side-by-side deployment of variants (what if some component
needs the old Glibc because it is incompatible with the new one?), makes rollbacks much
harder (essential in server environments), and is generally bad from an SCM perspective
(since it becomes much harder to identify the current configuration). Also, such destructive
upgrades only work with dynamic linking and other late-binding techniques; if the com-
ponent has been statically linked into other components at build time, we must identify all
affected components and upgrade them as well. This was a major problem when a security
bug was discovered in the ubiquitous Zlib compression library [1].

If we were to use destructive upgrading in Nix, it would violate the crucial deployment
invariant that the hash of a path uniquely describes the component. (This is similar to
allowing assignments in purely functional programming languages such as Haskell [135].)
From a configuration management perspective, the hashes identify the configuration of the
components, and destructive updates remove the ability to identify what we have on our
system. Also, it destroys the component isolation property, i.e., that an upgrade to one
component cannot cause the failure to another component. If an upgrade is not entirely
backwards compatible, this no longer holds.

One might ask whether the relative difficulty (in terms of hardware resources, not de-
veloper or user effort) of deploying upgrades doesn’t show that Nix is unsuitable for large-
scale software deployment. However, Nix’s advantages in supporting side-by-side vari-
ability, correct dependency, atomic rollbacks, and so on, in the face of a quasi-component
model (i.e., the huge base of existing Unix packages) not designed to support those fea-
tures, make it compelling to seek a solution to the upgrade deployment problem within the
Nix framework.

Upgrading through wrappers One way to efficiently deploy upgrades that works in
many instances of late static composition is to use wrapper components. These were al-
ready discussed in Section 7.1.1. The idea is to deploy a new set of Nix expressions that
describe a new derivation graph that is exactly the same as the original one (thus previously
installed components do not need to be rebuilt or redownloaded), except that at top-level
a wrapper component is added. This wrapper must ensure that at runtime the upgraded
component is used, rather than the old one.

Figure 7.6 shows an example for Mozilla Firefox, which has a dependency on Glibc,
both directly and indirectly through GTK; this situation is shown on the left. Suppose that
we want to deploy an upgraded version of Glibc. We deploy a Nix expression that evaluates
to the derivations shown on the right. The wrapper component depends on Firefox (which
it wraps and forwards to), and the new Glibc (glibc’). The wrapper script for Firefox calls
the original Firefox like this:
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glibc

gtk

firefox

glib

Original derivation graph

glibc

gtk

firefox

firefoxWrapper

glib

glibc’

New derivation graph

Figure 7.6.: Upgrading through wrappers

LD_LIBRARY_PATH=new-glibc-path :$LD_LIBRARY_PATH

exec original-firefox-path /bin/firefox "$@"

This causes the dynamic linker to use the new Glibc instead of the old one8. The old Glibc
is still part of the closure, but it won’t be used.

Clearly, the LD_LIBRARY_PATH is highly specific to dynamic linking on certain Unix
platforms, although similar tricks are available for many other types of composition (e.g.,
juggling the PATH variable for composition through program calls). We also often cannot
be certain that the override is used in all places. Finally, unscoped composition mecha-
nisms make it quite hard to see what the effect of an override will be, leading to buggy
wrappers.

A general solution: binary patching Thus, upgrading through wrappers is not a gen-
eral solution. A general solution to the huge binary redeployment caused by a change
to a fundamental component such as Glibc is by transparently deploying binary patches
between component releases. For instance, if a bug fix to Glibc induces a switch from
/nix/store/72by2iw5wd8i...-glibc-2.3.5 to /nix/store/shfb6q9yvk0l...-glibc-2.3.5-patch-1, then
we compute the delta (the binary patch) between the contents of those paths and make the
patch available to clients. We also do this for all components depending on it. Subsequently
the clients can apply those patches to the old version to produce the new version. As we
shall see in Section 7.5.4, patches for components affected by a change to a dependency
are generally very small.

A binary patch describes a set of edit operations that transforms a base FSO stored at
path psrc in the Nix store into a target FSO stored at path pdst . Thus, if a client needs path
pdst and it has path psrc already installed, then it can speed up the installation of pdst by
downloading the patch from psrc to pdst , copying psrc to pdst in the Nix store, and finally
applying the patch to pdst .

This fits nicely into Nix’s substitute mechanism (Section 7.3) used to implement trans-
parent binary deployment. We just extend its download capabilities: if a patch is available,

8It’s a bit more tricky in reality, since the path of the old Glibc is hard-coded into the RPATHs of the Firefox and
GTK binaries. The dynamic linker has an option to override the RPATH, however.
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rather than doing a full download, we download the patch instead. Manifests are extended
to specify the availability of patches. For instance, the manifest entry

patch {

StorePath: /nix/store/lhix54krdqkp...-firefox-1.0

NarURL: http://server/0iihh1l7vvpa...-firefox-1.0.nar-bsdiff

Hash: sha256:...

NarHash: sha256:...

Size: 357

BasePath: /nix/store/mkmpxqr8d7f7...-firefox-1.0

BaseHash: sha256:...

}

describes a 357-byte patch from the Firefox component shown in the previous section
(stored at BasePath) to a new one (stored at StorePath) induced by a Glibc upgrade. If
a patch is not available, or if the base component is not installed, we fall back to a full
download of the new component; or even a local build if no download is available.

NarURL is the URL of the patch, Hash is the cryptographic hash of the contents of the
patch, and NarHash is the cryptographic hash of the serialisation of the resulting FSO (just
as in normal downloads). BaseHash is the cryptographic hash of the serialisation of the
FSO at the base path to which the patch applies. In the extensional model, due to impure
builders, the contents of an FSO at a given path need not always be the same. If the local
contents differ from the contents on which the patch is based at the deployer’s machine,
then the patch cannot be applied. In the intensional model with its content-addressable Nix
store, this is not an issue: if due to builder impurity a derivation has produced different
output on the local machine than on the deployer’s, the patch’s base path simply will not
exist.

7.5.1. Binary patch creation

There are many off-the-shelf algorithms and implementations to compute binary deltas
between two arbitrary files. Such algorithms produce a list of edit operations such as
copying a sequence of bytes from a position in the original file to a possibly different
position in the new file, inserting a new sequence of bytes at a some position in the new
file, and so on. I used the bsdiff utility [132] because it produces relatively small patches
(see Section 7.6).

However, the components in the Nix store are arbitrary directory trees. How do we pro-
duce deltas between directories trees? A “simple” solution is to compute deltas between
corresponding regular files (i.e., with the same relative path in the components) and dis-
tribute all deltas together. The full contents of all new files in the target should also be
added, as well as a list describing file deletions, changes to symlink contents, etc. Files not
listed can be assumed to be unchanged.

This method is both complicated and has the severe problem of not following renames.
For instance, the Firefox component stores most of its files in a subdirectory lib/firefox-
version. The method described above fails to patch, e.g., lib/firefox-0.9/libmozjs.so into
lib/firefox-1.0/libmozjs.so since the path names do not correspond; rather, the latter file is
stored in full in the patch. Hence, with this method patching is not very effective in the
presence of renames.
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A/B
c0 0f 85 2b fc
 ff ff 8b 45 d8 
85 c0 0f f3 ..

C/D
c0 0f 85 2b fc
 ff ff 8b 45 d8 
85 c0 0f f3 ..

copy

Base

Target

Figure 7.7.: Deltas between archives handle renames, deletions, and additions

There is however a much simpler and more effective solution: we take the patch between
the serialisations of the components. That is, we use the function serialise (Section 5.2.1)
to produce NAR archives for both the old and the new FSO, and compute the binary delta
between those two files. Here we see why it is important that serialise produces a canonical
representation of the FSO: it prevents a patch from failing to apply due to implementation
differences in the archiving tool, or system dependencies (e.g., different orderings of files
in directories). Formats such as TAR and ZIP do not have a canonical form.

Computing deltas between archives automatically takes renames, deletions, file type
changes, etc. into account, since these are just simple changes within the archive files.
Figure 7.7 shows an example of why this is the case: the original file A/B has been moved
and renamed to C/D, which furthermore is stored in a different part of the NAR archive.
However, the file contents are the same (or mildly changed). The binary delta algorithm
will just emit an edit operation that changes the first file name into the second, followed by
the appropriate edit operations for the file contents. It does not matter whether the position
of the file in the archive has changed: contrary to delta algorithms like the standard diff
tool, bsdiff can handle re-orderings of the data.

To apply a patch, a client creates an archive of the base component, applies the binary
patch to it, and unpacks the resulting archive into the target path.

7.5.2. Patch chaining

It is generally infeasible to produce patches between every pair of releases of a set of com-
ponents. The number of patches would be O(n2m), where n is the number of releases and
m is the number of components. As an example, consider the Nix Packages collection. Pre-
releases of Nixpkgs are made automatically by a build farm (Chapter 8) on every commit to
its version management repository, which typically is several times a day. The pre-releases
are made available in a channel. Since we do not want to impose full redownloads on
developers whenever something changes, we want to make patches available.

Unfortunately, since pre-releases appear so often, we cannot feasibly produce patches
between each pair of pre-releases. So as a general policy we only produce patches be-
tween immediately succeeding pre-releases. Given releases 0.7pre1899, 0.7pre1928 and
0.7pre1931, we produce patches between 0.7pre1899 and 0.7pre1928, and between 0.7pre-
1928 and 0.7pre1931. This creates a problem, however: suppose that a user has Firefox
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... 0.6pre1741 ... 0.7pre1928 ... 0.70.5 0.6 0.7pre1777 0.7pre1785

Figure 7.8.: Patch sets created between Nixpkgs releases

from 0.7pre1899 installed, and Firefox changed in both succeeding releases, then there is
no patch that brings the user up-to-date.

The solution is to automatically chain patches, i.e., using a series of available patches
psrc → ...→ pn → pdst to produce path pdst . In the example above, we have a Firefox
component installed that can be used as the base path to a patch in the 0.7pre1928 release,
to produce a component that can in turn serve as a base path to a patch in the 0.7pre1931
release.

However, such patch sequences can eventually become so large that their combined size
approaches or exceeds the size of full downloads. In that case we can “short-circuit” the
sequence by adding patches between additional releases. Figure 7.8 shows an example of
patches between Nixpkgs releases thus formed. Arrows indicate the existence of a patch
set between pairs of releases. Here, patch sets are produced by directly succeeding pre-
releases, and between any successive stable releases. An additional “short-circuit” patch
set between 0.7pre1785 and 0.7pre1928 was also made.

In the presence of patch sets between arbitrary releases, it is not directly obvious which
sequence of patches or full downloads is optimal. To be fully general, the Nix substitute
downloader runs a shortest path algorithm on a directed acyclic graph that, intuitively, rep-
resents components already installed, available patches between components, and available
full downloads of components. Formally, the graph is defined as follows:

• The nodes are the store paths for which pre-built binaries are available on the server,
either as full downloads or as patches, plus any store paths that serve as bases to
patches. There is also a special start node.

• There are three types of edges:

– Patch edges between store paths that represent available patches. The edge
weight is the size of the patch (in bytes). In the extensional hash, edges from
nodes representing valid store paths are only added if the cryptographic hash
of the serialisation of the store path matches the patch’s BaseHash field, since
the patch is inapplicable otherwise.

– Full download edges from start to a store path for which we have a full down-
load available. The edge weight is the size of the full download.

– Free edges from start to a valid store path, representing an FSO that is already
available on the system. The edge weight is 0.

We then find the shortest path between start and the path of the requested component
using Dijkstra’s shortest path algorithm. This method can find any of the following:
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start

l9z62mg66xq3...-firefox-1.0.3

11158372

(full download)

zncs96rbsf9q...-firefox-1.0.1

0

(present)

3ll5pr8hasqr...-firefox-0.9

0

(present)

k7psi6ill5qb...-firefox-1.0.2

154179

(patch)

789234

(patch)

244869

(patch)

Figure 7.9.: Finding the optimal set of downloads

• A sequence of patches transforming an already installed component into the re-
quested component.

• A full download of the requested component.

• A full download of some component X which is then transformed using a sequence
of patches into the requested component. Generally, this will be longer than imme-
diately doing a full download of the requested component, but this allows one to
make only patches available for upgrades.

Figure 7.9 shows the graph for an instance of Firefox 1.0.2. It is available as a large full
download, and through a chain of patches. There are two Firefox instances that are valid
base paths for patches. (There might be other valid Firefox instances in the local store, but
these do not serve as base paths for patches.) There are 3 patches: one from Firefox 0.9 to
1.0.2, one from 1.0.1 to 1.0.2, and one from 1.0.2 to 1.0.3. The patch sequence that applies
the 1.0.1 to 1.0.2 and 1.0.2 to 1.0.3 patches to the valid 1.0.1 instance is the shortest path
from the start node to the desired store path of 1.0.3, and is therefore selected.

Above, edge weight was defined as the size of downloads in bytes. We could take other
factors into account, such as protocol/network overhead per download, the CPU resources
necessary to apply patches, and so on. For instance, on a reasonably fast connection, a full
download might be preferable over a long sequence of patches even if the combined byte
count of those patches is less than the full download.

7.5.3. Base selection

To deploy an upgrade, we have to produce patches between “corresponding” components.
This is intuitively simple: for instance, to deploy a Glibc upgrade, we have to produce
patches between the old Glibc and the new one, but also between the components depend-
ing on it, e.g., between the old Firefox and the new one. However, a complication is that
the dependency graphs might not be isomorphic. Components may have been removed
or added, dependencies moved, component names changed (e.g., Phoenix to Firebird to
Firefox to mention a real-world example), and so on. Also, even disregarding component
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renames, simply matching by name is insufficient because there may be multiple compo-
nent instances with the same name (e.g., builds for different platforms).

When deploying a set of target store paths Y, the base selection problem is to select
from a set of base store paths X a set of patches (X ,Y ) ∈ (X×Y) such that the probability
of the Xs being present on the clients is maximised within certain resource constraints.

Clearly, we could produce patches between all Xs and Y s. This policy is “optimal”
in the sense that the client is always able to select the absolutely shortest sequence of
patches. However, it is infeasible in terms of time and space since producing a patch
takes a non-negligible amount of time, and most such patches will be large since they
will be between unrelated components (patching Adobe Reader into Firefox is obviously
inefficient—though possible!).

Therefore, we need to select some subset of (X×Y). The solution currently imple-
mented is pragmatic: we use a number of properties of the components to guess whether
they “match” (i.e., are conceptually the “same” component). Indeed, the selection prob-
lem appears to force us to resort to heuristics for two reasons. First, there can be arbitrary
changes between releases. Second, we cannot feasibly produce all patches to select the
“best” according to some objective criterion.

Possible heuristics include the following:

• Same component name. This is clearly one of the simplest and most effective criteria.
However, there is a complication: there can be multiple components with the same
name. For instance, Nixpkgs contains the GNU C Compiler gcc at several levels
in the dependency graph (due to bootstrapping). Also, it contains two components
called firefox—one is the “real thing”, the other is a shell script wrapper around the
first to enable some plugins. Finally, Nixpkgs contains the same components for
multiple platforms.

• The weighted number of uses can be used to disambiguate between components
at different bootstrapping levels such as GCC mentioned above, or disambiguate
between certain variants of a component. It is defined for a component at path p as
follows:

w(p) = ∑
q∈users(p)

1
rd(q,p)

where users(p) is the set of components from which p is reachable in the build-time
dependency graph, i.e., the components that are directly or indirectly dependent on
p; where d(q, p) is the unweighted distance from component q to p in the build-time
dependency graph; and where r ≥ 1 is an empirically determined value that causes
less weight to be given to “distant” dependencies than to “nearby” dependencies.

For instance, in the Nixpkgs dependency graph, there is a “bootstrap” GCC and a
“final” GCC, the former being used to compile the latter, and the latter being used
to compile almost all other packages. If we were to take the unweighted number of
uses (r = 1), then the bootstrap GCC would have a slightly higher number of uses
than the final GCC (since any component using the latter is indirectly dependent
on the former), but the difference is too small for disambiguation—such a difference
could also be caused by the addition or removal of dependent components. However,
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if we take, e.g., r = 2, then the weighted number of uses for the final GCC will be
almost twice as large. This is because the bootstrap GCC is at least one step further
away in the dependency graph from the majority of components, thus halving their
contribution to its w(p).

Thus, if the ratio between w(p) and w(q) is greater than some empirically deter-
mined value k, then components p and q are considered unrelated, and no patch
between them is produced. A good value for k is around 2, e.g., k = 1.9.

• Size of the component. If the ratio between the sizes of two components differs more
than some value l, then the components are considered unrelated. A typical value is
l = 3; even if components differing in size by a factor of 3 are related, then patching
is unlikely to be effective. This trivial heuristic can disambiguate between the two
Firefox components mentioned above, since the wrapper script component is much
smaller than the real Firefox component.

• Platform. In general, it is pointless to create a patch between components for dif-
ferent platforms (e.g., Linux and Mac OS X), since it is unlikely that a client has
components for a different platform installed.

7.5.4. Experience

The binary patch deployment scheme described above has been implemented in the Nix
system. To get some experimental results regarding the efficiency of binary patching, I
used it to produce patches between 50 subsequent releases and pre-releases of the Nix
Packages collection. Base components were selected on the basis of matching names,
using the size and weighted number of uses to disambiguate between a number of com-
ponents with equal names. The use of patches is automatic and completely transparent to
users; an upgrade action in Nix uses (a sequence of) patches if available and applicable, and
falls back to full downloads otherwise. The results below show that the patching scheme
succeeds in its main goal, i.e., reducing network bandwidth consumption in the face of
updates to fundamental components such as Glibc or GCC to an “acceptable” level.

I computed for each pair of subsequent releases the size of an upgrade using full down-
loads of changed components, versus the size of the required patches to changed com-
ponents. Also, the average and median sizes of each patch for the changed components
(or full download, if no patch was possible) were computed. New top-level components
(e.g., applications introduced in the new release) were disregarded. Table 7.1 summarises
the results for a number of selected releases, representing various types of upgrades. File
sizes are in bytes unless specified otherwise. Omitted releases were typically upgrades of
single leaf components such as applications. An example is the Firefox upgrade in revision
0.6pre1702.

Efficient upgrades or patches to fundamental components are the main goal of this sec-
tion. For instance, release 0.7pre1980 upgraded the GNU C Compiler used to build all
other components, while releases 0.7pre1820 and 0.7pre1977 provided bug fixes to the
GNU C Library, also used at build time and at runtime by all other components. The
patches resulting from the Glibc changes in particular are tiny: the median patch size is
around 440 bytes. This is because such patches generally only need to modify the RPATH
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Release
Comps.
changed

Full
size

Total
patch
size

Savings
Avg.
patch
size

Median
patch
size

Remarks

0.6pre1069 27 31.6M 162K 99.5% 6172 898 X11 libraries update
0.6pre1489 147 180M 71M 60.5% 495K 81K Glibc 2.3.2 to 2.3.3,

GCC 3.3.3 to 3.4.2,
many other changes9

0.6pre1538 147 176.7M 364K 99.8% 2536 509 Standard build environ-
ment changes

0.6pre1542 1 9.3M 67K 99.3% 67K 67K Firefox bug fix
0.6pre1672 26 38.0M 562K 98.6% 22155 6475 GTK updates
0.6pre1702 3 11.0M 190K 98.3% 63K 234K Firefox 1.0rc1 to 1.0rc2
0.7pre1820 154 188.6M 598K 99.7% 3981 446 Glibc loadlocale bug fix
0.7pre1931 1 1164K 45K 96.1% 45K 45K Subversion 1.1.1 to 1.1.2
0.7pre1977 153 196.3M 743K 99.6% 4977 440 Glibc UTF-8 locales

patch
0.7pre1980 154 197.2M 3748K 98.1% 24924 974 GCC 3.4.2 to 3.4.3

Table 7.1.: Statistics for patch sets between selected Nixpkgs releases and their immediate
predecessors

in executable and shared libraries. The average is higher (around 4K) because a handful of
applications and libraries statically link against Glibc components. Still, the total size of
the patches for all components is only 598K and 743K, respectively—a fairly trivial size
even on slow modem connections.

On the other hand, release 0.6pre1489 is not small at all—the patch savings are only
60.5%. However, this release contained many significant changes. In particular, there was
a major upgrade to GCC, with important changes to the generated code in all components.
In general, compilers should not be switched lightly. (If individual components need an
upgraded version, e.g., to fix a code generation bug, that is no problem: Nix expressions,
being written in a functional language, can easily express that different components must
be built with different compilers.) Minor compiler upgrades need not be a problem; release
0.7pre1980, which featured a minor upgrade to GCC, has a 98.1% patch effectiveness.

Patch generation is a relatively slow process. For example, the generation of the patch
set for release 0.7pre1820 took 49 minutes on a 3.2 GHz Pentium 4 machine with 1 GiB
of RAM running Linux 2.4.26. The bsdiff program also needs a large amount of memory;
its documentation recommends a working set of at least 8 times the base file. For a large
component such as Glibc, which takes 46M of disk space, this works out to 368M of RAM.
In fact, we cannot currently compute patches for teTeX (a TEX distribution), regardless of
how much physical memory or swap space is available, because the address space of 32-bit
machines is not large enough to compute patches between teTeX’s NAR archives, which
are around 230 MiB large. The solution is a more efficient bsdiff implementation, or simply
to migrate to a 64-bit system for patch computation.

A final point not addressed previously is the disk space consumption of upgrades. A

9First release since 0.6pre1398.
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change to a component such as Glibc will still cause every component to be duplicated on
disk, even if they do no longer have to be downloaded in full. However, after an upgrade, a
user can run the Nix garbage collector that safely and automatically removes unused com-
ponents. Nonetheless, as an optimisation, we observe that many files in those components
will be exactly the same (e.g., header files, scripts, documentation, JAR files). Therefore,
I implemented a tool that “optimises” the Nix store by finding all identical regular files
in the store, and replacing them with hard links [152] to a single copy. On typical Nix
stores (i.e., subject to normal evolution over a period of time) this saved between 15–30%
of disk space. While this is useful, it is not an order of magnitude change as is the case
with the amount of bandwidth saved using patches. Section 11.1 discusses as future work
the possibility of using file systems that support delta storage to solve this problem.

7.6. Related work

This section compares Nix’s suitability for deployment to other tools. Section 1.2 already
touched on some of these. Most deployment tools are based on a destructive upgrade
paradigm. Thus non-interference is not guaranteed at all, rollbacks are not easily sup-
ported, and upgrading is certainly not atomic. Every system depends on the deployer to
specify correct runtime dependencies, although some systems have (optional) provisions
to determine build time dependencies. All systems have a fairly strict separation between
source and binary deployment, if both are supported at all. Interestingly, in terms of sup-
porting correct deployment, the tools that come nearest to the ideal are not classical de-
ployment systems (e.g., package managers) but “developer side” SCM systems such as
Vesta, as discussed below.

Traditional Unix deployment systems What follows is a list of previous, “conven-
tional” approaches to deployment in the Unix community, in more or less chronological
order. I then contrast these approaches to Nix.

The Depot [116] is a deployment scheme for heterogeneous environments based on
sharing components through Sun’s Network File System (NFS) [23] or a similar technol-
ogy. Such sharing is trivial in homogeneous environments, as each client machine can
mount and use exactly the same server file system. In a heterogeneous environment, how-
ever, it may be necessary to build components for many different platforms. The Depot
stores each component in its own isolated directory hierarchy (e.g., /depot/.primary/anApp),
with subdirectories for sources, platform-independent files (e.g., .../include), and platform-
dependent files (e.g., .../arch.sun4-os4). On the client machines, a platform-specific view
on these components is synthesised. For instance, the component may be made available
under /depot/anApp, with the platform-specific directory (e.g., /depot/.primary/anApp/-
arch.sun4-os4) mounted on /depot/anApp/arch. Thus, each client has the same logical
view of the component; e.g., /depot/anApp/arch/bin/foo always denotes the foo program for
the current platform. Of course, the client view can also be implemented through symlinks
or copying.

The Depot paper does not describe how components are built from sources. That is, it
does not appear to have an analogue to Nix expressions. Indeed, an interesting aspect of
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Depot-like approaches is that they support deployment, but are lacking in certain config-
uration management aspects. For instance, most Depot papers leave unspecified how the
components in the Depot are created. Presumably, these are “manually” built by the system
administrator by unpacking sources in the appropriate directory, building the component,
and installing it to the appropriate target location. This means that the build is not under
CM control, so there is neither reproducibility nor traceability.

Another system called Depot is described in [32]. It uses symbolic links to activated
components, like Nix’s user environments. This is a very common technique; e.g., GNU
Stow [78] uses it as well.

Depot-Lite [143] improves on Depot. It has a primitive scanning approach for finding
retained dependencies: component directories are scanned for the names of other com-
ponent directories (e.g., tk-3.3). However, such names are not very unique (contrary to
cryptographic hashes) and may lead to many false positives. Many aspects of the tool are
rather ad hoc. For instance, “safe” uninstallation is performed by making the component
unreadable, then making it readable again if users complain during a certain time window.
Similarly, Depot-Lite allows normal users to install software, but the security model is that
components are made read-only after a “stabilisation period” of 21 days.

Depot and its descendents (including Store [26], Local Disk Depot [181], SEPP [125]
and GNU Stow [78]) are based on a notion of isolation between components, i.e., storing
components in their own private directory trees in the file system. Many other deployment
tools work within the traditional Unix file system organisation, i.e., installing components
into directories such as /usr/bin.

The FreeBSD Ports Collection [73] is an example of such a deployment system. As
described in Section 1.2, it automatically fetches and builds components from sources,
recursively installing dependencies as well. Thus the build process is at least mostly repro-
ducible. As [84] points out, a problem with the FreeBSD Ports Collection is that it embeds
dependency information into Makefiles, which makes it hard to query dependencies. A
more recent source deployment system is Gentoo Linux’s Portage [77], which places par-
ticular emphasis on customisability of components through its USE flags mechanism.

The Red Hat Package Manager (RPM) [62] is also designed to support the conventional
Unix file system layout, but it makes the chaos of that layout manageable by tracking com-
ponent metadata in a database. This metadata allows an administrator to query what files
belong to what packages, and so on—an invaluable capability sorely lacking in many other
systems. The knowledge provided in the database also allows RPM to prevent operations
that would violate correctness constraints (e.g., two components occupying the same paths
in the file system, or removal of a component that is required by another component).

RPM operates at the package storage level, rather than the deployment level. That is, it
has no way to fetch missing dependencies automatically. Deployment systems such as the
FreeBSD Ports Collection, yum [174], and Debian’s venerable apt (Advanced Packaging
Tool) [149] maintain knowledge of repositories of remotely available packages and can
fetch these on demand. Thus they are complete deployment systems.

So how do all these systems compare to Nix? All deployment tools that use the tradi-
tional Unix file system layout must necessarily be based on destructive upgrading. Thus
they cannot support atomic upgrades or rollbacks, unless the underlying file system sup-
ports transactions, that is, when an arbitrarily long sequence of file system operations can
be wrapped into a single atomic transaction. (No widely used file system provides this
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capability.) Note that it is not enough for the file system to use transactions in its own
implementation, e.g., to ensure recoverability; transactions should be made available to
user space processes. Thus the operating system should have APIs to make transactions
available to user space (conventional file system APIs do not). An example is the Inversion
file system [128]. Deployme [129] is a system that uses unspecified existing deployment
tools to implement automatic rollback on failure of the new components (i.e., when an au-
tomatic test set fails). However, automatic rollback on failure was found to be undesirable
by users.

In a destructive model, side-by-side deployment of versions and variants is only possible
if the package author specifically arranges it (by making sure that files in different versions
or variants have non-overlapping paths).

None of the systems described above have any fundamental means to prevent undeclared
dependencies. Some use specific tricks such as looking at ELF executable headers to find
library dependencies, or non-portable methods such as tracking all file system accesses
performed by builds (but note that this fails to discover retained dependencies!).

Automatic garbage collection of unused components is a rare feature, since it requires
a notion of “root” components. In systems such as RPM, even though the system knows
the dependency graph between components, it does not know what components constitute
roots (e.g., applications) and so can never delete components automatically.

Nix’s transparent source/binary deployment is a fairly unique feature. Gentoo does have
a primitive form of transparent source/binary deployment, but correspondence between
sources and binaries is only nominal. That is, dependencies, build flags, and so on are not
taken into account. It is not widely used for general deployment, only for mass deployment
in specific environments.

A neat feature that Nix does not support is automatic, on-demand installation of appli-
cations. There are few deployment systems that do: Zero Install [112] is an exception.
When a user starts a program, the file system access is trapped and Zero Install automat-
ically downloads the program from a remote repository. Of course, the problem with on-
demand installation is that the remote component repository might not be available when
it is needed.

Some environments such as Windows and Mac OS X dispense with having a system-
wide, standard deployment system altogether10. That is, they do not have a package man-
agement system such as RPM or Nix that maintains a global view of all components in the
system along with their interdependencies. Rather, actions such as upgrading and uninstal-
lating are the responsibility of each application. This has important consequences. First,
it is impossible for administrators to do queries about components in a generic way. For
instance, they cannot ask to what component a given file belongs. Second, since each
application is essentially independent, there can be no dependencies. As a result, appli-
cations in these environments are all but required to be monolithic: they must contain all
their dependencies, i.e., each application must be its own closure.

Integrated CM systems An interesting class of systems that might support deploy-
ment is integrated configuration management systems such as Vesta [92, 93, 94],

10Recent versions of Windows do contain the Windows Installer, which provides a standardised method to install
packages. However, its use is not yet universal.
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ClearCase [109], and Camera [114, 58, 59]. These provide more than mere source ver-
sion management: they also provide build management. All three use a virtual file system
(implemented through the NFS protocol) to track file system accesses, allowing detection
of build-time dependencies. However, they are classical CM systems in that they support
the development process, but are not intended to extend further along the software time-
line, i.e., to deployment on end-user machines (though ClearCase can be used to support
deployment in conjunction with IBM’s Tivoli Configuration Manager [83]). That is, they
are used to build software artifacts such as executables, which are then shipped to the
clients through some unrelated mechanism, outside the scope of the CM system. It is a
fairly recent insight that CM tools should extend to deployment [167, 168].

However, perhaps we can use these tools to support deployment already, i.e., it is just a
matter of focus rather than underlying technology? This is certainly possible, but Nix has
some important differences:

• Since hashes are explicit in paths, we can scan for retained dependencies. The sys-
tems mentioned above can only detect dependencies when they are accessed, e.g.,
at build time. So we cannot compute a closure in advance, and it is possible that
we discover too late that the deployment is incomplete. This makes them unsuitable
for general deployment—that is, more restrictive constraints on components than the
assumptions in Section 6.8 must be made.

• Nix focuses on deployment. Quite a few aspects that have been carefully designed
in Nix to support deployment are absent in integrated CM systems, such as a no-
tion of user environments, various deployment models (source, binary, transparent
source/binary), secure sharing of a store, and so on.

• Nix does not rely on non-portable operating system extensions, i.e., a virtual file
system. Such extensions may be fine for development systems (though this is ques-
tionable), but they are a barrier to use as a deployment tool, as each user must install
the extension.

• Likewise, integration of version management and build management is a barrier to
use, as it potentially forces developers to switch both their version and build man-
agement tools to the integrated system, even when they are only interested in one of
its aspects.

A nice property of Camera is that builds are performed in a chroot environment [114,
Section 8.3.2]. A chroot is a Unix feature that allows a process’s file system accesses to be
confined to a part of the file system by setting its root directory to a specific directory [152].
This allows Camera to prevent undeclared dependencies.

.NET and Java Web Start Section 1.2 briefly discussed Microsoft’s .NET [17, 154],
which can store components in a Global Assembly Cache. Assemblies are essentially
.NET’s units of deployment. Assemblies have unique strong names that allow versions or
variants to coexist. While this is a big step forward from previous deployment technologies
in the Windows environment, it differs in important ways from the work described in this
thesis:
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• It covers only executable resources, i.e., the assemblies in the GAC. It cannot see
dependencies caused by, e.g., paths specified in configuration files.

• Most components are stored in unmanaged parts of the file system, i.e., outside of
the GAC.

• There is no connection between a strong name and the contents of a component.
Thus it is possible for multiple components produced by a vendor to have the same
strong name. In practice this is not a problem.

• It is bound to a specific component technology.

The latter criticism also applies to technologies such as Sun’s Java Web Start [117], which
enables web-based deployment of Java applications.

Nix on the other hand deals with components at the most fundamental level: their storage
in the file system. Thus it is agnostic with respect to particular component technologies.

Software updaters Many recent software products come with their own built-in package
management system (Vendor Product Updaters in the terminology of [102]), primarily
to support automatic updating and management of extensions. Such applications include
Mozilla Firefox, Eclipse, Microsoft Windows XP, and many others. These built-in updaters
have a terrible problem: they interact very badly with system-wide package management
systems such as Nix or RPM. A package manager assumes that it alone modifies the set
of installed components. If a component modifies itself or other components, the package
manager’s view of the system is no longer consistent with reality.

Furthermore, package managers provide useful functionality that product-specific up-
daters must reimplement—poorly. Indeed, they are often implemented in an ad hoc fash-
ion and ignore many important issues. Dependency management, side-by-side versioning,
rollbacks, and traceability are almost never properly supported. In particular, operation
in a multi-user environment—where the running component typically does not have write
permission to its own installation files—is almost always neglected. For instance, Firefox’s
automatic updater simply will not work in such environments.

The deployment lifecycle In [168, 24] the deployment process is structured into a life-
cycle consisting of various activities such as release, install, activation, deactivation, adapt,
update, adaptation, de-install and de-release. All of these activities are explicitly present
in Nix and the policies described in Section 7.4, except for the following. Adaptation
(modifying the configuration of installed components) is not an explicit operation. Rather,
adaptation is typically done by modifying a Nix expression and re-installing it (cf. the Fire-
fox wrapper in Section 7.1.1). Also, components are not de-installed explicitly but rather
are removed implicitly by the garbage collector. Finally, the various policies do not have
a well-defined way to de-release a component (i.e., make it unavailable). Of course, we
can simply remove the Nix expressions, manifests, and binaries from the distribution site.
However, this removal does not automatically propagate to clients; for instance, clients
might have manifests that refer to removed binaries.

Surveys of the extent to which various deployment tools support the deployment lifecy-
cle can be found in [24, 102].
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The Software Dock The Software Dock [85, 84] is a distributed, agent-based deploy-
ment framework. It consists of two types of “docks”: release docks that represent com-
ponent producers and maintain information about available releases, and field docks that
represent clients and maintain information about the state of the local machines (e.g., al-
ready installed software). An important aspect of the Software Dock is that it supports the
full lifecycle mentioned above. For instance, release docks can inform field docks about
new releases. This is implemented through the Siena event service [25]. Software com-
ponents, when deployed to a client, are accompanied by agents, which are programs that
implement component-specific behaviour for lifecycle activities such as upgrades. An im-
portant part of the Software Dock is the Deployable Software Description (DSD), which
is a standard language for describing software system families; i.e., it allows variability in
related sets of components to be described.

The most important difference between the Software Dock and the present work is that
Nix addresses low-level building and storage of components. That is, it enforces isolation,
complete dependencies, and so on, by imposing a discipline on the storage of components.
In the Software Dock, it is up to the various agents that perform deployment activities how
to store components in the file system, whether to support multiple versions or variants
side-by-side, whether to support rollbacks, and so on.

The Software Dock’s main strengths lie in its high-level policies that support the entire
lifecycle of large systems, while this thesis emphasises the low-level aspects of compo-
nents. For instance, none of the deployment policies in Section 7.4 are truly “push” based.
Channels crudely can serve as a push model by having clients poll at short intervals, but
this is clearly a poor approach. Thus, closer cooperation between producers and clients,
such as enabled by the Software Dock’s event model, would allow more deployment poli-
cies to be supported. However, this is something that can be implemented in policies; it
does not affect the basic Nix mechanisms.

Release management Van der Hoek et al. [169] list a number of requirements on de-
ployment systems. It is instructive to determine to what extent Nix meets these require-
ments.

• “Dependencies should be explicit and easily recorded.” Enforcing correct depen-
dencies was one of the main drivers behind the present research. As we have seen in
Section 7.1.5, Nix is successful in preventing undeclared dependencies.

• “A system should be available through multiple channels.” The policy-freeness of
the substitute mechanism allows Nix to support a wide variety of distribution chan-
nels, such as HTTP, installation CD-ROMs, etc.

• “The release process should involve minimal effort on the part of the developer.”
This is somewhat hard to quantify, but Nix has several features that reduce devel-
oper effort. Nix expressions allow a system to be rebuilt automatically when the
developer changes some part of it. Transparent source/binary deployment removes
the burden of having to create binary packages explicitly (other than executing a nix-
push command on the source “package”). Isolation and correct dependencies reduce
maintenance effort by making components more robust.
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• “The scope of a release should be controllable,” i.e., developers should be able to
restrict releases to certain parties. Access control of releases is an orthogonal issue
to the low-level Nix mechanisms. For instance, if components are deployed through
a channel accessed through HTTP, then the web server can be configured with ap-
propriate access controls.

• “A history of retrievals should be kept.” Again, this is a feature that can be provided
by, e.g., a web server.

• “Sufficient descriptive information should be available” to the user. This is currently
missing: there is nothing in Nix expressions to describe a component, other than its
name attribute. However, additional attributes can be easily added (e.g., a description
attribute) and presented to the user through commands such as nix-env or on web
pages for one-click installations.

• “Physical distribution should be hidden,” i.e., the user should not have to be aware
of the physical locations of components. Nix expressions frequently involve many
physical locations (e.g., calls to fetchurl), but these are all handled automatically and
do not concern the user (unless, of course, one of the locations becomes unavailable).

• “Interdependent systems should be retrievable as a group.” Dependent components
(e.g., servers that access each other) can always be composed into a wrapper compo-
nent that starts and stops them as appropriate (examples of this are shown in Chap-
ter 9). Assertions in Nix expressions can express consistency requirements between
components.

• “Unnecessary retrievals should be avoided.” This is certainly the case: once a store
path is valid, it does not need to be built or downloaded again.

Deployment languages Hall et al. [86] list a number of requirements for a software
deployment language, i.e., a formalism that contains the necessary information to support
the deployment process. They identify the following bits of information that must be
expressible in such a language:

• Assertion constraints express consistency requirements between components. The
Nix expression language provides assertions for this purpose. However, many con-
straints of this type are actually unnecessary in the purely functional model, since
constraints cannot be invalidated after a component has been built. For instance, the
paper gives an example of a Java application that requires exactly version 1.0.2 of
the Java Virtual Machine. This constraint can be true at installation time, but become
invalid if the JVM is updated later on. In Nix, if the JVM is part of the closure of the
application, this situation cannot happen.

• Dependency constraints are a more flexible kind of constraint that assertion con-
straints.

• Artifacts are the things that make up the components in the system. Nix expressions
list all artifacts necessary to build components from source. However, they do not
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list the artifacts in the resulting derivation outputs. This means, for instance, that
there currently is no way to query what component provides a certain command
(e.g., bin/firefox) since that information is only available after components have been
built—it does not follow from the Nix expression.

• Configuration information describes the variability provided by components. Func-
tions in Nix expressions serve this role.

• Activities are the types of deployment actions that a component or system supports,
such as installation, upgrading, and uninstallation. But there might be many others,
such as starting or stopping a server component, so the language must be flexible.
The Nix expression language has no direct provisions for supporting such activities,
but we can support them as a policy on components. For instance, Chapter 9 shows
how server components can support start and stop actions simply by providing a
script called control in their output paths.

Binary patching Binary patching has a long history, going back to manual patching of
binaries on mainframes in the 1960s, where it was often a more efficient method of fixing
bugs than recompiling from source. Binary patching has been available in commercial
patch tools such as .RTPatch, and interactive installer tools such as InstallShield. Most
Unix binary package managers only support upgrades through full downloads. Microsoft
recently introduced binary patching in Windows XP Service Pack 2 as a method to speed
up bug fix deployment [39]. Recent releases of SuSE Linux provide Delta RPMs, which
are binary patches between serialisations of the contents of RPM packages in cpio archive
format. This is quite similar to the method of patch computation described in Section 7.5.1.
An interesting point is that the cpio archive format does not have a well-defined canonical
form. So it is possible that in the future patches may fail to apply due to cpio implementa-
tion differences. Also, no automatic patch chaining is provided.

A method for automatically computing and distributing binary patches between
FreeBSD releases is described in [131]. It addresses the additional complication that
FreeBSD systems are often built from source, and the resulting binaries can differ even
if the sources are the same, for instance, due to timestamps being stored in files. In the
Nix patching scheme we guard against this possibility by providing the MD5 hash of the
archive to which the patch applies. If it does not apply, we fall back to a full download. In
general, however, this situation does not occur because patches are obtained from the same
source as the original binaries.

In Nix, the use of patches is completely hidden from users, who only observe it as a
speed increase. In general, deployment methods often require users to figure out what files
to download in order to install an upgrade (e.g., hotfixes in Windows). Also, if sequences
of patches are required, these must be applied manually by the user, unless the distributor
has consolidated them into a single patch. The creation of patches is often a manual and
error-prone process, e.g., figuring out what components to redeploy as a result of a security
bug like [1]. In our approach, this determination is automatic.

The bsdiff program [132] that Nix uses to generate patches is based on the qsufsort
algorithm [108]. In our experience bsdiff outperformed methods such as ZDelta [162] and
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VDelta [97, 107], but a comparison of delta algorithms is beyond the scope of this thesis.
An overview of some delta algorithms is given in [97].

The problem of keeping derivates consistent with sources and dependency graph speci-
fications occurs in all build systems, e.g., Make [56]. To ensure correctness, such systems
must rebuild all dependent objects if some source changes. If a source is fundamental,
then a large number of build actions may be necessary. So this problem is not unique in
any way to Nix. However, the problems of build systems affect developers, not end-users,
while Nix is a deployment system first and foremost. This is why it is important to ensure
that end-users are not affected by the use of a strict update propagation semantics.
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This chapter shows that the Nix system can be applied to the problem of running a build
farm, which is a tool to support continuous integration and automated release manage-
ment. The former is the practice of automatically building and testing revisions of software
components during the development process. The latter is the process of automatically pro-
ducing releases of components that can be downloaded and installed by users. The two are
related: if a software revision builds correctly and passes the tests, the build can be made
available as a release. In fact, such a release can be made available to Nix users through
the mechanisms described in Section 7.4, such as channels or one-click installations.

8.1. Motivation

Continuous integration [72] is a good software engineering practice. The idea is that each
software development project should have a fully automated build system. Then we can
run the build system automatically to continuously produce the most recent version of the
software. Every time a developer commits a change to the project’s version management
system, the continuous integration system checks out the source of the project, runs its
automated build process, and creates a report describing the result of the build. The latter
might be presented on a web page and/or sent to the developers through e-mail.

Of course, developers are supposed to test their changes before they commit. The added
advantage of a continuous integration system (apart from catching developers who don’t
test their changes) is that it allows much more in-depth testing of the component(s) being
developed:

• The software may need to be built and tested on many different platforms (i.e., porta-
bility testing). It is infeasible for each developer to do this before every commit.

• Likewise, many projects have very large test sets (e.g., regression tests in a compiler,
or stress tests in a DBMS) that can take hours or days to run to completion.

• It may also be necessary to build many different variants of the software. For in-
stance, it may be necessary to verify that the component builds with various versions
of a compiler.

• Developers will typically use incremental building to test their changes (since a full
build may take too long), but this is often unreliable with many build management
tools (such as Make). That is, the result of the incremental build might differ from a
full build.
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• It ensures that the software can be built from the sources under revision control. In
systems such as CVS [60] and Subversion [137], developers commonly forget to
place source files under revision control.

• The machines on which the continuous integration system runs ideally provides a
clean, well-defined build environment. If this environment is administered through
proper SCM techniques, then builds produced by the system can be reproduced.
In contrast, developer work environments are typically not under any kind of SCM
control.

• In large projects, developers often work on a particular component of the project,
and do not build and test the composition of those components (again since this
is likely to take too long). To prevent the phenomenon of “big bang integration”,
where components are only tested together near the end of the development process,
it is important to test components together as soon as possible (hence continuous
integration).

A continuous integration system typically sits in a loop building and releasing software
components from a version management system. These are its jobs. For each job, it
performs the following tasks:

1. It obtains the latest version of the component’s source code from the version man-
agement system.

2. It runs the component’s build process (which presumably includes the execution of
the component’s test set).

3. It presents the results of the build (such as error logs) to the developers, e.g., by
producing a web page.

A continuous integration system can also produce releases automatically. That is, when
an automatic build succeeds (and possibly when it fails!), the build result can be packaged
and made available in some way to developers and users. For instance, it can produce
a web page containing links to the packaged source code for the release, as well as bi-
nary distributions. The production of releases fits naturally in the actions described above:
the build process of the component should produce the desired release artifacts, and the
presentation of the build result will be the release web page.

The machines on which the continuous integration system runs are sometimes referred
to as a build farm [91], since to support multi-platform projects or large sets of projects, a
possibly large number of machines is required. (As a “degenerate case”, a build farm can
also be a single machine.)

However, existing build farm tools (such as CruiseControl, Anthill, and Tinderbox) have
various limitations, discussed below.

Managing the environment One of the main problems in running a build farm is its
manageability. Build farms scale poorly in terms of administrative overhead. The jobs that
we want to run in the build farm require a certain environment (such as dependencies).
Thus we have to make sure that the proper environment exists on every machine in the
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build farm. If this is done manually, the administration effort of the build farm scales
linearly in the number of machines (Θ(n)).

Suppose that we want to build a component that requires a certain compiler X . We
then have to go to each machine and install X . If we later need a newer version of X ,
the process must be repeated all over again. An ever worse problem occurs if there are
conflicting dependencies. A real-life example is that some components require different,
mutually exclusive versions of the Autoconf package [64]. That is, simply installing the
latest version is not an option. Of course, we can install these components in different
directories and manually pass the appropriate paths to the build processes of the various
components. But this is a rather tiresome and error-prone process.

Of course, Nix nails this problem: since Nix expressions describe not just how to build
a single component but also how to build all its dependencies, Nix expressions are an
excellent way to describe build jobs. Also, the problem of dealing with variability in the
environment (such as conflicting dependencies), are automatically resolved due to Nix’s
hashing scheme: different dependencies end up in different paths, and Nix takes care of
calling builders with the appropriate paths to dependencies. Finally, Nix’s support for
distributed and multi-platform builds (through the build hook mechanism of Section 5.5.2)
addresses the scalability problem: as we will see below, a configuration change needs to
be made only once (to the Nix expression), and Nix through the build hook will take care
of rebuilding the new configuration on all platforms.

Distributed and multi-platform builds Another problem in supporting multi-platform
projects is how to actually perform the build. Should each machine in the build farm
independently perform jobs? If yes, then it is hard to generate a combined multi-platform
release page. Therefore a centralised model is preferable, in which a single designated
machine selects jobs to build and forwards build actions to particular machines in the build
farm. This is far from trivial, since it entails copying build inputs and outputs to and from
machines. In fact, a build action on one machine can depend on the result of a build action
on another (an example of which will be shown below).

Again, the build hook mechanism enables a solution to this problem, since a single Nix
expression can describe derivations for different platforms (i.e., different values for the
system attribute). Derivations with different system values can also depend on each other.
The build hook described below takes care of copying the appropriate closures between
machines.

Building multiple configurations It should be easy to build components in many dif-
ferent variants, as mentioned above. A special case is building many different composi-
tions, as this can reveal information useful from the perspective of continuous integration.
Consider the real-life example shown in Figure 8.1 of two compilers: Stratego [176], a
language based on strategic term rewriting; and Tiger, an implementation of the Tiger lan-
guage [4] in Stratego. Suppose that both compilers have stable releases (e.g., Stratego 0.16
and Tiger 1.2) but are also under active development. Then there are various kinds of in-
formation that the Stratego and Tiger developers might want to obtain from the continuous
integration system:

• The Tiger developers want to know whether the most recent development version of

211



8. Continuous Integration and Release Management

Stratego 0.16

Tiger 1.2 Tiger HEAD

Stratego HEAD

Figure 8.1.: Multiple ways of combining component revisions

Tiger (its HEAD revision) still builds. Here it is appropriate to build Tiger against a
stable release of Stratego (i.e., 0.16), since when a build failure occurs the developers
can then be reasonably certain that the cause is in Tiger, not Stratego.

• However, the Tiger developers may also want to know whether their current source
base is synchronised with possible changes in the Stratego compiler; i.e., whether
the HEAD revision of Tiger builds against the HEAD revision of Stratego.

• Likewise, the Stratego developer may want to build the stable release of Tiger against
the HEAD revision of Stratego, so that Tiger can act as a large regression test for
Stratego.

This pattern is quite common in large projects where development is split among several
development groups who every so often make releases available to other groups. It is quite
easy to implement building all these variants, since we can just turn the Nix expressions
that build the various components into functions that accept their dependencies as param-
eters (as in Section 2.2).

Scheduling policies A build farm should support a variety of different scheduling poli-
cies. For instance, rather than building after each commit, the build can be performed on
a fixed schedule, e.g., at 02:00 at night every day. This is often referred to as a “daily
build” [118]. It is however generally preferable to build as quickly as possible to ensure
speedy feedback to developers. This is sometimes infeasible. In a build farm used by sev-
eral jobs, a particular job may take a very long time to build, starving the other jobs. In that
situation it may be better to schedule the offending job to run (say) at most once a week,
or to run at a fixed time of day.

More elaborate policies are also possible in a build farm that cleanly supports building
of different variants of a component. Consider for instance a compiler project that must
be built on many machines and has a huge regression test set. We can schedule two jobs
for this project: a continuously running quick one that builds the compiler on only one
platform, and runs only a few tests; and a weekly scheduled slow one that builds on all
platforms and runs all tests.

8.2. The Nix build farm

This section gives a sketch of the build farm that we implemented using Nix. The build
farm at present is not much more than a set of fairly simple scripts to run jobs, to build
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<job id='patchelf-head'>

<input id='job' type='svn'

url='https://.../repos/trace/release/trunk' /> 139
<input id='patchelfHead' type='svn'

url='https://.../repos/trace/patchelf/trunk />

<job-script>generic-dist/build+upload.sh</job-script> 140
<arg>./jobs/nix/patchelf.nix</arg> 141
<arg>patchelfHeadRelease</arg> 142
<arg>http://nix.cs.uu.nl/dist/stratego</arg> 143
<notify-address>somebody@example.org</notify-address> 144

</job>

Figure 8.2.: A build job (simplified)

the desired release products such as various kinds of binary distributions, and to produce
release pages. The “heavy lifting” of managing the environment is provided by the Nix
technology described in previous chapters. Thus, the process of adding a job to the build
farm consists essentially of writing Nix expressions that describe components and their
dependencies.

The current Nix build farm consists of a number of components. At the highest level,
there is a supervisor script (supervisor.pl) that reads build jobs from a file (jobs.conf) and
executes them in circular order. The jobs file is in XML format. Figure 8.2 shows an ex-
ample of the declaration of a build job for the HEAD revision of the PatchELF component
(a small component that we saw on page 179). It specifies the locations of the inputs to the
build (as URLs of Subversion repositories) 139 , the name of the script that performs the
job 140 , and its command-line arguments 141 . Each input is fetched from its Subversion
repository. The path of the job script is relative to the input that has ID job.

The supervisor sends e-mail notification if a job fails (or if it succeeds again after it has
failed previously) to the address specified in the job 144 . To prevent a flood of repeated
e-mail messages for a failing build, after a job fails, the supervisor will not schedule it
again until a certain time interval has passed. This interval increases on every failure using
a binary exponential back-off method.

Note that the supervisor is completely Nix-agnostic: it does not care how jobs are per-
formed. It is up to the job script to perform the build in some arbitrary way.

The job script build+upload.sh actually uses Nix to perform a build. It instantiates and
builds a Nix expression specified as a command-line argument (e.g., ./jobs/nix/patchelf.nix
at 141 ). This Nix expression is actually a function that takes as arguments the paths of
the inputs declared in the XML job declaration (i.e., at 139 ), and the target URL of the
release page (specified at 143 ). The job script expects the top-level derivation in the Nix
expression to produce a release page, which is an HTML page describing the release, plus
an arbitrary set of files associated with the release (such as source or binary distributions,
manuals to be placed online, and so on).

Figure 8.3 shows the Nix expression ./jobs/nix/patchelf.nix that builds a release for
PatchELF. Release pages are produced by the function patchelfRelease 149 that accepts
a single argument input that points to the component’s source code as obtained by the
script build+upload.sh by performing a checkout from PatchELF’s Subversion repository.
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inputs: distBaseURL: 145

with (import ../..) inputs.nixpkgs.path; 146

rec {

patchelfTarball = input: svnToSourceTarball "patchelf" input { 147
inherit (pkgs) stdenv fetchsvn;

buildInputs = [ pkgs.autoconf pkgs.automake ];

};

patchelfNixBuild = input: pkgs: nixBuild (patchelfTarball input) { 148
inherit (pkgs) stdenv;

};

patchelfRelease = input: makeReleasePage { 149
fullName = "PatchELF";

contactEmail = "eelco@cs.uu.nl";

sourceTarball = patchelfTarball input;

nixBuilds = [

(patchelfNixBuild input pkgsLinux)

];

inherit distBaseURL;

};

patchelfHeadRelease = patchelfRelease (inputs.patchelfHead); 150
}

Figure 8.3.: Build farm Nix expression for PatchELF

A release page produced by patchelfRelease is shown in Figure 8.4.
The actual production of the release page is done by the generic release page builder

function makeReleasePage (brought into scope in the with-expression at 146 ). It accepts
many arguments, only some of which are shown in the PatchELF example:

• The name of the component (e.g., "PatchELF").

• A contact e-mail address placed on the generated release pages.

• The target URL (e.g., distBaseURL) of the release page. The release page builder
does not perform uploads itself (since that is impure) but it needs the target URL for
self-references in the release page.

• A derivation that builds a source distribution (sourceTarball), e.g., the file patchelf-
0.1pre3663.tar.gz that can be downloaded, compiled, and installed by users. The
source distribution is produced from the Subversion sources (i.e., input) by the func-
tion patchelfTarball 147 . (A tarball is a Unix colloquialism for a source distribution.)
Here too the actual work is done by an external generic function svnToSourceTarball.
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Figure 8.4.: Release page for PatchELF

• A list of derivations that perform normal builds of the component from the source
distribution (nixBuilds). These are used to automatically populate a channel to which
users can subscribe, and to generate packages for one-click installation (see Sec-
tion 7.4). In this case the builds are produced by the function patchelfNixBuild 148 ,
which in turn uses the (poorly named) generic function nixBuild.

• Similarly, makeReleasePage accepts attributes for the component’s manual, cover-
age analysis builds, and RPM packages.

The top-level derivation is produced by evaluation of the value patchelfHeadRelease
150 . The name of this attribute was specified in the XML job description at 142 . Building
of this derivation will produce the release page and all the distributions included on the
release page (in the example, a source distribution and a Nix channel distribution).

The build+upload.sh script, as its name implies, not only builds the derivation but also
uploads the release page to the server. Each release is stored under its own URL, e.g.,
http://nix.cs.uu.nl/dist/nix/patchelf-0.1pre3663/. It also performs a nix-push to build and
upload the Nix expressions in the channels provided by the release. The uploading of
the release is assisted by a server-side CGI script that stores the uploaded files and, when
the upload is done, updates various index pages listing the release. Figure 8.5 shows the

215



8. Continuous Integration and Release Management

Figure 8.5.: Release overview

automatically generated index of the most recent releases, concisely showing the extent to
which each release succeeded.

Reproducing releases An important configuration management property is the ability
to reproduce releases in the future. E.g., when we need to fix a bug in some old release
of a component, we need to be able to reproduce the entire build environment, including
compilers, libraries, and so on. So it is important that we have a record that describes
exactly what inputs went into a release.

Therefore the build farm stores a file job.xml as part of every release, e.g., under http:
//nix.cs.uu.nl/dist/nix/patchelf-0.1pre3663/job.xml. This file is the same as the XML job
description that went into the supervisor (e.g., the one in Figure 8.2), except that each
input element that referred to a non-constant input such as a HEAD revision has been
“absolutised”. For instance, the patchelfHead input element has been changed into:

<input id='patchelfHead' type='svn'

url='https://.../repos/trace/patchelf/trunk

rev='3663' hash='b252b5740a0d...' />

That is, it no longer refers to the HEAD revision of the Subversion repository of PatchELF,
but to a specific revision. Since this job.xml is a perfectly valid build job, we can feed it
into the supervisor to reproduce the build.

Release process As can be seen in Figure 8.5, each release has a symbolic name, such
as patchelf-0.1pre3663. The current build farm implements the policy that names including
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the string pre in the version string are “unstable” releases (i.e., only intended for developers
or bleeding edge users), and are “stable” otherwise. Stable releases are intended to be kept
indefinitely, while unstable releases can be deleted eventually. More importantly, stable
and unstable releases appear in separate channels. For instance, the URL of the channel
for stable PatchELF releases is

http://nix.cs.uu.nl/dist/nix/channels/patchelf-stable

while the channel for unstable releases is

http://nix.cs.uu.nl/dist/nix/channels/patchelf-unstable

The release name is computed by the build jobs themselves. The component name (e.g.,
patchelf) is generally hard-coded into the build job (e.g., at 147 ). The version name is
usually computed by taking the version number hard-coded into the source (e.g., 0.1) and
appending preN, where N is the revision number of the Subversion repository (e.g., 3663),
if the release is unstable. Whether the release is stable or unstable is also hard-coded in
the sources.

For instance, for Autoconf-based components, the release name is usually computed by
the configure script, which contains a line

STABLE=0

in the sources in the main development branch of the project (trunk in Subversion termi-
nology [137]). Thus all releases built from the main branch will be unstable releases. To
build a stable release, it suffices to change the line to

STABLE=1

and rebuild.
In practice, a more controlled process is used to build stable releases. To build a stable

release, e.g., patchelf-0.1, the development branch is copied to a special release branch,
e.g., branches/patchelf-0.1-release. In this branch, the stable flag is set. A one-time
job for this branch is then added to jobs.conf. After the release succeeds, the release
branch is tagged and removed. That is, branches/X -release is moved to tags/X ; e.g.,
branches/patchelf-0.1-release is moved to tags/patchelf-0.1.

8.3. Distributed builds

Nix expressions allow multi-platform builds to be described and built in a centralised man-
ner. In the Nix expression for the PatchELF job, we have one channel build for Linux:

nixBuilds = [

(patchelfNixBuild input pkgsLinux)

];

Here, pkgsLinux is an attribute set consisting of the derivations in the Nix Packages collec-
tion built for i686-linux. That is, the function patchelfNixBuild accepts the dependencies to
use as an argument 148 . Note that this includes the standard environment stdenv, which

217



8. Continuous Integration and Release Management

nix@mcflurry.labs.cs.uu.nl powerpc-darwin 1

nix@losser.labs.cs.uu.nl i686-freebsd 1

nix@itchy.labs.cs.uu.nl i686-linux 1

nix@scratchy.labs.cs.uu.nl i686-linux 2

Figure 8.6.: remote-systems.conf: definition of build farm machines

determines the platform on which to build (since the function mkDerivation in stdenv sets
the system attribute for the derivation).

So if we also have sets of dependencies built for other platforms, we can trivially perform
channel builds for these platforms, e.g.,:

nixBuilds = [

(patchelfNixBuild input pkgsLinux)

(patchelfNixBuild input pkgsFreeBSD)

(patchelfNixBuild input pkgsDarwin)

];

where pkgsFreeBSD is Nixpkgs built for i686-freebsd, and pkgsDarwin is for powerpc-
darwin (i.e., Apple’s Mac OS X). Thus this Nix expression abstracts over platforms and
machines; it is up to Nix to somehow build each derivation on a machine of the appropriate
type.

Of course, the supervisor and build+upload.sh run on some particular platform, e.g.,
i686-linux. Nix cannot build derivations for other platforms, and will fail if it has to do
so ( 76 in Figure 5.11). This is where build hooks come in (Section 5.5.2). The script
build+upload.sh runs Nix with the environment variable NIX_BUILD_HOOK pointing at a
concrete build hook script build-remote.pl.

This hook uses a table of machines to perform builds, remote-systems.conf, shown in
Figure 8.6. Each entry in the table specifies a user account and remote host on which
a build can be performed (e.g., nix@mcflurry.labs.cs.uu.nl), the machine’s platform type
(e.g., powerpc-darwin), and its maximum load, which is the maximum number of jobs that
the hook will concurrently execute on the machine (e.g., 1). Generally, the maximum load
is equal to the number of CPUs in the machine. There can be multiple machines with the
same platform type, allowing more derivations to be built in parallel. The hook maintains
the load on each machine in a persistent state file.

The hook uses the Rsync protocol [163] over Secure Shell (SSH) [61] to copy the input
closures to the Nix store of the selected remote machine. The build is then performed by
running Nix on the remote machine (also executed through SSH). Finally, the output is
copied back to the local Nix store using Rsync.

8.4. Discussion and related work

This section describes some of the advantages and disadvantages of the Nix build farm
relative to other continuous integration tools.

The main advantage is the use of Nix expressions to describe and build jobs. It makes the
management of the build environment (i.e., dependencies) quite easy and scalable. This
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aspect is completely ignored by tools such as CruiseControl [158] and Tinderbox [69],
which expect the environment to be managed by the machine’s administrator. Anthill [165]
has the notion of “dependency groups” that allows an ordering between build jobs.

Most of these systems are targeted at testing, not producing releases. Sisyphus [171]
on the other hand is a continuous integration system that is explicitly intended to support
deployment of upgrades to clients. It uses a destructive update model, which makes it easy
to use with existing deployment tools, but bars side-by-side versioning and rollbacks.

The centralised view of the build job for a release is also a big plus. Systems such as
Tinderbox have a more “anarchistic” approach: build farm machines perform jobs essen-
tially independently, and send the results to a central machine that presents them on a web
page. This is fine for continuous integration per se, but is not a good model if we want
integration with release management. Since each build independently selects which revi-
sion to build, there is no guarantee that any particular revision will always be built by all
machines. Thus there is no guarantee that a complete release page will ever be made.

A fundamental downside to the Nix build farm is that by building in Nix, by definition
we are building in a way that differs from the “native” method for the platform. If a com-
ponent builds and passes the tests on powerpc-darwin, we can conclude that the component
can work on that platform; but we cannot conclude that it will work if a user were to down-
load the source and build using the platform’s native tools (e.g., the C compiler provided
in /usr/bin). That is, while the build farm builds the component in a Nix environment,
most users will use it in a non-Nix environment. This limits the level of portability testing
attained by the Nix build farm.

On the other hand, this situation can be improved by simulating the native environment
as closely as possible, e.g., by providing the same tool versions. Nevertheless, there is no
getting around the fact that the paths of those tools differ; they are in the store, not in their
native locations in the file system.

However, we can still build “native” binary distributions in some cases. For example,
we use User-Mode Linux (UML) [45] to build RPM packages for various platforms. User-
Mode Linux is a normal user space program that runs a complete Linux operating system
inside a virtual machine. Thus, the builder of the derivation that builds RPMs is entirely
pure: it simply runs UML to build the RPM.

Of course, we can also do “native” builds directly in Nix builders if we are willing to
accept a level of impurity (e.g., by adding /usr/bin to PATH). We can even test whether the
component installs properly to an impure location (such as /usr/local/my-package) if the
builder has sufficient permissions. In fact, the latter need not even be impure as long as the
following conditions hold:

• Subsequent derivations do not depend on output in impure locations. Thus, the
builder should remove the impure output at the end of the build script.

• Locking should be used to prevent multiple derivations from installing into the same
impure location. E.g., derivations that want to install into /usr/local/my-package can
acquire an exclusive lock on a lock /usr/local/my-package.lock.

A more transient limitation of the prototype build farm is its poor scheduling. (A better
supervisor is currently being implemented.) It simply runs jobs after each other in a con-
tinuous loop. It supports none of the more advanced scheduling methods discussed earlier.
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It also does not run jobs in parallel, which leads to poor utilisation of the build farm. For
instance, builds on Macs generally take (much) longer than on other machines. A multi-
platform job can therefore cause many machines to be idle, as the job waits for the Mac
build to finish. It is then useful to start a new job to put the idle machines to good use.

220



9. Service Deployment

This chapter shows that Nix extends naturally into the domain of service deployment. A
software service is a set of processes running on one or more machines that cooperate to
provide a useful facility to an end-user or to another software system. An example might
be a bug tracking service, implemented through a web server running certain web applica-
tions and a back-end database storing persistent data. A service is generally implemented
through a set of software components, static data files, dynamic state (such as databases
and log files), and configuration files that tie all these together.

The deployment of such software services is very often a time-consuming and error-
prone activity for developers and system administrators. In order to produce a working
service, one must typically install a large set of components, put them in the right locations,
write configuration files, create state directories or initialise databases, make sure that all
sorts of processes are started in the right order on the right machines, and so on. These
activities are quite often performed manually, or scripted in an ad hoc way.

A particularly troubling aspect of common service deployment practice is the lack of
good configuration management. For instance, the software environment of a machine
may be under the control of a package manager, and the configuration files and static data
of the service under the control of a version management system. That is, these two parts
of the service are both under CM control. However, the combination of the two isn’t:
we don’t have a way to express that (say) the configuration of a web server consists of a
composition of a specific instance of Apache, specific versions of configuration files and
data files, and so on.

This means that we lack important features of good CM practice. There is no identi-
fication: we do not have a way to name what the running configuration on a system is.
We may have a way to identify the configurations of the code and data bits (e.g., through
package management and version management tools), but we have no handle on the com-
position. Likewise, there is no derivation management: a software service is ideally an
automatically constructed derivate of code and data artifacts, meaning that we can always
automatically rebuild it, e.g., to move it to another machine. However, if administrators
ever manually edit a file of a running service, we lose this property.

In practice, we see that important service deployment operations are quite hard. Moving
a service to another machine can be time-consuming if we have to figure out exactly what
software components to install in order to establish the proper environment for the service.
Having multiple instances of a service (e.g., a test and production instance) running side-
by-side on the same machine is difficult since we must arrange for the instances not to
overwrite each other, which often entails manually copying files and tweaking paths in
configuration files. Performing a rollback of a configuration after an upgrade might be
very difficult, in particular if software components were replaced.

Of course, these properties—automatic derivations, side-by-side existence, rollbacks,
identifiability and reproducibility—are all provided by Nix. Up till now, we have shown
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software

data

configuration

subversion

openssl db4perl expatperlBerkeleyDB

apache

/data/subversion/http.conf

control

Figure 9.1.: Dependencies between code, configuration, and data components in a Subver-
sion service

how software components can be built and deployed through Nix. This chapter shows that
simply by treating services as components, we can build and deploy those as well.

9.1. Overview

9.1.1. Service components

From the perspective of a user, a service is a collection of data in some format with a
coherent set of operations (use cases) on those data. Typical examples are a Subversion
version management service [137] in which the data are repositories and the operations
are version management actions such as committing, adding, and renaming files; a TWiki
service [157] in which the data are web pages and operations are viewing, editing, and
adding pages; and a JIRA issue-tracking service in which the data consists of entries in an
issue data-base and the operations are issue management actions such as opening, updating,
and closing issues. In these examples, the service has persistent data that is stored on the
server and that can be modified by the operations of the server. However, a service can
also be stateless and just provide some computation on data provided by the client at each
request, e.g., a translation service that translates a document uploaded by the client.

From the perspective of a system administrator, a service consists of data directories
containing the persistent state, software components that implement the operations on the
data, and a configuration of those components binding the software to the data and to the
local environment. Typically, the configuration includes definitions of paths to data di-
rectories and software components, and items such as the URLs and ports at which the
service is provided. Furthermore, the configuration provides meta-operations for initialis-
ing, starting, and stopping the service. Figure 9.1 illustrates this with a diagram sketching
the composition of a version management service based on Apache and Subversion com-
ponents. The control component is a script that implements the meta-operations, while the
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ServerRoot "/var/httpd"

ServerAdmin eelco@cs.uu.nl

ServerName svn.cs.uu.nl:8080

DocumentRoot "/var/httpd/root"

LoadModule dav_svn_module /usr/lib/modules/mod_dav_svn.so

<Location /repos>

AuthType Basic

AuthDBMUserFile /data/subversion/db/svn-users

...

DAV svn

SVNParentPath /data/subversion/repos

</Location>

Figure 9.2.: Parts of httpd.conf showing hosting of Subversion by an Apache server

file httpd.conf defines the configuration. The software components underlying a service are
generally not self-contained, but rather composed from a (large) number of auxiliary com-
ponents. For example, Figure 9.1 shows that Subversion and Apache depend on a number
of other software components such as OpenSSL and Berkeley DB.

9.1.2. Service configuration and deployment

Setting up a service requires installing the software components and all of their dependen-
cies, ensuring that the versions of the installed components are compatible with each other.
The data directories should be initialised to the required format and possibly filled with
an initial data set. Finally, a configuration file should be created to point to the software
and data components. For example, Figure 9.2 shows an excerpt of an Apache httpd.conf
configuration file for a Subversion service. The file uses absolute pathnames to software
components such as a WebDAV module for Subversion, and data directories such as the
place where repositories are stored.

Installation of software components using traditional package management systems is
fraught with problems. Package managers do not enforce the completeness of dependency
declarations of a component. The fact that a component works in a test environment, does
not guarantee that it will work on a client site, since the test environment may provide
components that are not explicitly declared as dependencies. As a consequence, com-
ponent compositions are not reproducible. The installation of components in a common
directory makes it hard to install multiple versions of a component or to roll back to a
previous configuration if it turns out that upgrading produces a faulty configuration.

These problems are compounded in the case of service management. Typically, man-
agement of configuration files is not coupled to management of software components.
Configuration files are maintained in some specific directory in the file system and chang-
ing a configuration is a destructive operation. Even if the configuration files are under
version management, there is no coupling to the versions of the software components that
they configure. Thus, even if it is possible to do a rollback of the configuration files to a
previous time, the installation of the software components may have changed in the mean-
time and become out of synch with the old configuration files. Finally, having a global
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{ stdenv, apacheHttpd, subversion }:

stdenv.mkDerivation {

name = "svn-service";

builder = ./builder.sh; # Build script.

control = ./control.in; # Control script template.

conf = ./httpd.conf.in; # Apache configuration template.

inherit apacheHttpd subversion;

}

Figure 9.3.: services/svn.nix: Function for creating an Apache-based Subversion service

pkgs = import ../pkgs/system/all-packages.nix;

subversion = import ../subversion/ {

# Get dependencies from all-packages.nix.

inherit (pkgs) stdenv fetchurl openssl httpd ...;

};

webServer = import ../services/svn.nix {

inherit (pkgs) stdenv apacheHttpd;

};

Figure 9.4.: configurations/svn.cs.uu.nl.nix: Composition of a Subversion service for a spe-
cific machine

configuration makes it hard to have multiple versions of a service running side by side, for
instance a production version and a version for testing an upgrade.

9.1.3. Capturing component compositions with Nix expressions

A service can be constructed just like a software component by composing the required
software, configuration, and control components. For example, Figure 9.3 defines a func-
tion for producing a Subversion service, given Apache (httpd) and Subversion components.
The build script of the service creates the Apache configuration file httpd.conf and the con-
trol script bin/control from templates by filling in the paths to the appropriate software
components. That is, the template httpd.conf.in contains placeholders such as

LoadModule dav_svn_module @subversion@/modules/mod_dav_svn.so

rather than absolute paths. The funcion in Figure 9.3 can be instantiated to create a concrete
instance of the service. For example, Figure 9.4 defines the composition of a concrete
Subversion service using an ./httpd.conf file defining the particulars of the service. Just
like installing a software component composition, service composition can be reproducibly
installed using the nix-env command:

$ nix-env -p /nix/var/nix/profiles/svn \

-f configuration/svn.nix -i

I.e., the service component is added to the specified profile. The execution of the service,
initialisation, activation, and deactivation, can be controlled using the control script with
commands such as
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# Recall the old server

oldServer=$(readlink -f $profiles/$serverName || true)

# Build and install the new server.

nix-env -p $profiles/$serverName -f "$nixExpr" -i

# Stop the old server.

if test -n "$oldServer"; then

$oldServer/bin/control stop || true

fi

# Start the new server.

$profiles/$serverName/bin/control start

Figure 9.5.: upgrade-server: Upgrading coupled to activation and deactivation

$ /nix/var/nix/profiles/svn/bin/control start

Similarly, the stop action stops the server.

9.1.4. Maintaining the service

A service evolves over time. New versions of components become available with new
functionality or security fixes; the configuration needs to be adapted to reflect changing
requirements or changes in the environment; the machine that hosts the service needs to
be rebooted; or the machine is retired and the service needs to be migrated to another
machine. Such changes can be expressed by adapting the Nix expressions appropriately
and rebuilding the service. The upgrade-server script in Figure 9.5 implements a common
sequence of actions to upgrade a service: build the new service, stop the old service, and
start the new one. Since changes are non-destructive, it is possible (through a similar com-
mand sequence) to roll back to a previous installation if the new one is not satisfactory.
By keeping the Nix expressions defining a service under version management, the com-
plete history of all aspects of the service is managed, and any version can be reproduced at
any time. An even better approach is to have upgrade-server build directly from a version
management repository, rather than from a working copy. In this way we can always trace
a running service configuration back to its sources in the version management system.

9.2. Composition of services

The previous section showed a sketch of an Apache-based Subversion service deployed us-
ing Nix. The major advantage is that such a service is a closure: all code and configuration
elements of the service are described in the Nix expression, and can thus be reproduced at
any time. Clearly, we can deploy other services along similar lines. For instance, we might
want to deploy an Apache-based TWiki service by providing Nix expressions to build the
TWiki components and to compose them with Apache (which entails writing a parame-
terised httpd.conf that enables the TWiki CGI scripts in Apache). However, suppose we
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software

data configuration

subversion

openssl db4perl expat

apachetwiki

mail

/data/subversion/

/data/twiki subversion.conftwiki.conf

http.conf

control

Figure 9.6.: An Apache-based composition of the Subversion and TWiki services

now want a single Apache server that provides both the Subversion and TWiki services.
How can we easily compose such services?

We can solve this problem by factoring out the service-specific parts of httpd.conf into
separate components called subservices. That is, we create configuration components
that contain httpd.conf fragments such as twiki.conf and subversion.conf. The top-level
httpd.conf merely contains the global server configuration such as host names, and includes
the service-specific fragments. A sketch of this composition is shown in Figure 9.6.

Figure 9.7 shows a concrete elaboration. Here, the functions imported from
../subversion-service and ../jira-service build the Subversion and JIRA configuration frag-
ments and store them under a subdirectory types/apache-httpd/conf/ in their prefixes. The
function imported from ../apache-httpd then builds a top-level httpd.conf that includes
those fragments. That is, there is a contract between the Apache service builder and the
subservices that allows them to be composed.

The subServices argument of the function in ../apache-httpd specifies the list of service
components that are to be composed. By modifying this list and running upgrade-server,
we can easily enable or disable subservices.

9.3. Variability and crosscutting configuration choices

A major factor in the difficulty of deploying services is that many configuration choices are
crosscutting: the realisation of such choices affects multiple configuration files or multiple
points in the same file. For instance, the Apache server in Figure 9.7 requires a TCP port
number on which the server listens for requests, so we pass that information to the top-
level webServer component. However, the user management interface of the Subversion
service also needs the port number to produce URLs pointing to itself. Hence, we see that
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subversionService = import ../subversion-service {

httpPort = 80; # see Section 9.3.

reposDir = "/data/subversion"; ...

};

jiraService = import ../jira-service {

twikisDir = "/data/twiki"; ...

};

webServer = import ../apache-httpd {

inherit (pkgs) stdenv apacheHttpd;

hostName = "svn.cs.uu.nl";

httpPort = 80;

subServices = [subversionService jiraService];

};

Figure 9.7.: Nix expression for the service in Figure 9.6

the port number is specified in two different places. In fact, Apache’s configuration itself
already needs the port in several places, e.g.,

ServerName example.org:8080

Listen 8080

<VirtualHost _default_:8080>

are some configuration statements that can occur concurrently in a typical httpd.conf. This
leads to obvious dangers: if we update one, we can easily forget to update the other.

A related problem is that we often want to build configurations in several variants. For
instance, we might want to build a server in test and production variants, with the former
listening on a different port. We could make the appropriate edits to the Nix expression
whenever we build either a test or production variant, or maintain two copies of the Nix
expression, but both are inconvenient and unsafe.

Using the Nix expression language we have the abstraction facilities to easily support
possibly crosscutting variation points. Figure 9.8 shows a refinement of the Apache com-
position in Figure 9.7. This Nix expression is now a function accepting a single boolean
argument productionServer that determines whether the instance is a test or production
configuration. This argument drives the value selected for the port number, which is prop-
agated to the two components that require this information. Thus, this crosscutting param-
eter is specified in only one place (though implemented in two). This is a major advantage
over most configuration file formats, which typically lack variables or other means of ab-
straction. For example, Enterprise JavaBeans deployment descriptors frequently become
unwieldy due to crosscutting variation points impacting many descriptors.

Of course, due to Nix’s cryptographic hashing scheme, building the server with different
values for productionServer (or manually editing in the Nix expression any aspect such as
the port attribute) yields different hashes and thus different paths. Therefore, multiple
configurations automatically can exist side by side on the same machine.
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{productionServer}:

let {

port = if productionServer then 80 else 8080;

webServer = import ./apache-httpd {

inherit (pkgs) stdenv apacheHttpd;

hostName = "svn.cs.uu.nl";

httpPort = port;

subServices = [subversionService jiraService];

};

subversionService = import ./subversion {

httpPort = port;

reposDir = "/data/subversion"; ...

};

jiraService = import ./jira {

twikisDir = "/data/twiki"; ...

};

}

Figure 9.8.: Dealing with crosscutting configuration choices

9.4. Distributed deployment

Complex services are often composed of several subservices running on different ma-
chines. For instance, consider a simple scenario of a JIRA bug tracking system. This
service consists of two separately running subservices, possibly on different machines: a
Jetty servlet container, and a PostgreSQL database server. These communicate with each
other through TCP connections.

Such configurations are often labourious to deploy and maintain, since we now have
two machines to administer and configure. This means that administrators have to log in
to multiple machines, make sure that services are started and running, and so on. That is,
without sufficient automation, the deployment effort rises linearly.

This section shows how one can implement distributed services by writing a single Nix
expression that describes each subservice and the machine on which it is to run. A special
service runner component will then take care of distributing the closure of each subservice
to the appropriate machines, and remotely running their control scripts.

An interesting complication is that the various machines may be of different machine
types, or may be running different operating systems. For instance, the Jetty container
might be running on a Linux machine, and the PostgreSQL database on a FreeBSD ma-
chine. As we saw in Section 8.3, we can build multi-platform Nix expressions using the
build hook mechanism.

Figure 9.9 shows the Nix expression for the JIRA example. We have two generic ser-
vices, namely PostgreSQL and Jetty. There is one concrete subservice, namely the JIRA
web application. This component is plugged into both generic services as a subservice,
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# Build a Postgres server on FreeBSD.

postgresService = import ./postgresql {

inherit (pkgsFreeBSD) stdenv postgresql;

host = "losser.labs.cs.uu.nl"; # Machine to run on.

dataDir = "/var/postgres/jira-data";

subServices = [jiraService];

allowedHosts = [jettyService.host]; # Access control.

};

# Build a Jetty container on Linux.

jettyService = import ./jetty {

inherit (pkgsLinux) stdenv jetty j2re;

host = "itchy.labs.cs.uu.nl"; # Machine to run on.

# Include the JIRA web application at URI path.
subServices = [ { path = "/jira"; war = jiraService; } ];

};

# Build a JIRA service.

jiraService = import ./jira/server-pkgs/jira/jira-war.nix {

inherit (pkgsLinux) stdenv fetchurl ant postgresql_jdbc;

databaseHost = postgresService.host; # Database to use.

};

# Compose the two services.

serviceRunner = import ./runner {

inherit (pkgsLinux) stdenv substituter;

services = [postgresService jettyService];

};

Figure 9.9.: 2-machine distributed service

though it provides a different interface to each (i.e., implementing different contracts). To
PostgreSQL, it provides an initialisation script that creates the database and tables. To
Jetty, it provides a WAR that can be loaded at a certain URI path.

The PostgreSQL service is built for FreeBSD; the other components are all built for
Linux. This is accomplished by passing input packages to the builders either for FreeBSD
or for Linux (e.g., inherit (pkgsFreeBSD) stdenv ...), which include the standard environ-
ment and therefore specify the system on which to build.

The two generic servers are combined into a single logical service by building a service
runner component, which is a simple wrapper component that at build time takes a list of
services, and generates a control script that starts or stops each in sequence. It also takes
care of distribution by deploying the closure of each service to the machine identified by its
host attribute, e.g., itchy.labs.cs.uu.nl for the Jetty service. For instance, when we run the
service runner’s start action, it copies each service and executes its start action remotely.

An interesting point is that the Nix expression nicely deals with a crosscutting aspect of
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the configuration: the host names of the machines on which the services are to run. These
are crosscutting because the services need to know each other’s host names. In order for
JIRA to access the database, the JIRA web application needs to know the host name of the
database server. Conversely, the database server must allow access to the machine running
the Jetty container. Here, host names are specified only once, and are propagated using
expressions such as allowedHosts = [jettyService.host].

9.5. Experience

We have used the Nix-based approach described in this chapter to deploy a number of
services, some in production use and some in education or development. The production
services are:

• An Apache-based Subversion server (svn.cs.uu.nl) with various extensions, such as
a user and repository management system. This is essentially the service described
in Section 9.2.

• An Apache-based TWiki server (http://www.cs.uu.nl/wiki/Center), also using the
composable infrastructure of Section 9.2. Thus, it is easy to create an Apache server
providing both the Subversion and TWiki services.

• A Jetty-based JIRA bug tracking system with a PostgreSQL database back-end, as
described in Section 9.4.

Also, Nix services were used in a Software Engineering course to allow teams of stu-
dents working on the implementation of a Jetty-based web service (a Wiki) to easily build
and run the service.

In all these cases, we have found that the greatest advantage of Nix service deployment
is the ease with which configurations can be reproduced: if a developer wants to create a
running instance of a service on his own machine, it is just a matter of a checkout of the
Nix expressions and associated files, and a call to upgrade-server. Without Nix, setting up
the required software environment for the service is much more work: installing software,
tweaking configuration files to the local machine, creating state locations, and so on. The
Nix services described above are essentially “plug-and-play”. Also, developer machines
can be quite heterogeneous. For instance, since Nix closures are self-contained, there are
no dependencies on the particulars of various Linux distributions that might be used by the
developers.

The ability to easily set up a test configuration is invaluable, as it makes it fairly trivial
to experiment with new configurations. The ability to reliably perform a rollback, even
in the face of software upgrades, is an important safety net if testing has failed to show a
problem with the new configuration.

9.6. Related work

It is not a new insight that the deployment of software should be treated as part of software
configuration. In particular the SWERL group at the University of Colorado at Boulder
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has argued for the application of software configuration management to software deploy-
ment [168], developed a framework for characterizing software deployment processes and
tools [24], and implemented the experimental system Software Dock integrating software
deployment processes [85, 84]. However, it appears that our work is unique in unifying the
deployment of software and configuration components.

Make is sometimes used to build various configuration files. However, Make doesn’t
allow side-by-side deployment, as running make overwrites the previously built configu-
rations. Thus, rollbacks are not possible. Also, the Make language is rather primitive. In
particular, since the only abstraction mechanisms are global variables and patterns, it is
hard to instantiate a subservice multiple times. As I discuss in Section 10.3, there are other
build managers that have more functional specification languages.

Cfengine is a popular system administration tool [22]. A declarative description of sets
of machines and the functionality they should provide is given, along with imperative ac-
tions that can realise a configuration, e.g., by rewriting configuration files in /etc. The
principal downside of such a model is that it is destructive: it realises a configuration by
overwriting the current one, which therefore disappears. Also, it is hard to predict what
the result of a Cfengine run will be, since actions are typically specified as edit actions on
system files, i.e., the initial state is not always specified. This is in contrast to the fully
generational approach advocated here, i.e., Nix builders generate configurations fully in-
depently from any previous configurations. Finally, since actions are specified with respect
to fixed configuration file locations (e.g., /etc/sendmail.mc), it is not easy for multiple con-
figurations to coexist. In the present work, fixed paths are only used for truly mutable state
such as databases and log files.

231



9. Service Deployment

232



10. Build Management

This chapter shows the final application of Nix: build management. It should be clear by
now that the low-level Nix system is essentially a build manager: it manages the automatic
construction of software artifacts based on a formal description of the build actions to be
performed (a Nix expression). This is exactly what tools such as Make [56] do.

However, the derivations that we have seen up till now have been large-grained: they
build complete components such as Mozilla Firefox. Such component build actions typi-
cally consist of many smaller build steps that are performed using conventional build tools
like Make. These are called by the builders of the derivations. There is no reason why
these smaller build steps (such as the compilation of a single source file, or linking object
files together into an executable) cannot be expressed in a Nix expression directly, obviat-
ing the need for separate build managers. Indeed, there are many advantages to using Nix
as a build manager over conventional (Make-like) approaches. Nix expressions constitute
a simple but powerful language to express the building of software systems, and Nix’s
isolation properties prevent the dependency problems that plague Make-like tools.

10.1. Low-level build management using Nix

Figure 10.1 shows an example of a Nix expression that builds the ATerm library [166] from
a set of C source files. The library (in this example) has a single variation point: whether it
is build as a shared library, or as a static library. Hence it is a function that takes a boolean
parameter sharedLib 151 . The constant sources defines the source files, which reside in
the same directory as the Nix expression 153 .

The library is produced by the attribute libATerm 155 . The result of this attribute is a call
to the function makeLibrary, defined externally (and imported in 152 ). This function takes
a number of attributes: the name of the library, the set of object files to link, and a flag
specifying whether to create a dynamic or static library. The object files are produced by
compiling each source file in sources:

objects = map compile sources;

That it, the function compile is applied to each source file. It is merely a wrapper around
the external function compileC to specify whether the object file should support dynamic
linking 154 . (On Unix, dynamic linking requires that source files are compiled as “position
independent code” [160].)

There are a few things worth noting here. First, we did not specify any header file
dependencies for the source files in sources, even though they include a number of system
and local header files (e.g., #include "aterm1.h"). However, these dependencies are found
automatically by compileC. How it does this is discussed below.
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{sharedLib ? true}: 151

with (import ../../../lib); 152

rec {

sources = [ 153
./afun.c ./aterm.c ./bafio.c ./byteio.c ./gc.c ./hash.c

./list.c ./make.c ./md5c.c ./memory.c ./tafio.c ./version.c

];

compile = main: compileC {inherit main sharedLib;}; 154

libATerm = makeLibrary { 155
libraryName = "ATerm";

objects = map compile sources;

inherit sharedLib;

};

}

Figure 10.1.: Nix expression for building the ATerm library

Second, every build step only uses sources in the Nix store. For instance, each compile
action (e.g., compile ./afun.c) compiles a source that resides in the Nix store; recall that the
Nix expression translation process (Section 5.4) copies each local file referenced in a Nix
expression to the Nix store. Header files found by compileC are also copied to the store.

Third, since the builder for each derivation (i.e., the compile and link steps) is pure, a
change to any input of a derivation will cause a rebuild. This includes changes to the main
C sources, header files, C compiler flags, the C compiler and other tools, and so on.

Figure 10.2 shows another Nix expression that imports the one in Figure 10.1 to build
a few small programs that link against the ATerm library; these are actually from the tests
directory of the ATerm package. The function compileTest 156 compiles and links a single
test program. This function is called for each test program 158 . Of course, body could also
have been written as

body = map compileTest [./fib.c ./primes.c];

Note that λ -abstraction (i.e., functions) and map take the role of pattern rules in Make.
But contrary to Make’s pattern rules, they are not global: we can define any number of
functions to build things in different ways in different parts of the Nix expression.

The test programs are linked against the ATerm library built by the function in Fig-
ure 10.1, which is called here to obtain a specific instance 157 . It is absolutely trivial to
use multiple variants of the library in a single Nix expression. If we want two programs
that link against the dynamic and static library, respectively, that’s easy:

foo = link {...;

libraries = [(import ../aterm {sharedLib = true;}).libATerm];
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with (import ../../../lib);

let {

compileTest = main: link { 156
objects = [(compileC {inherit main; localIncludePath = [../aterm];})];

libraries = [(import ../aterm {sharedLib = true;}).libATerm]; 157
};

body = [

(compileTest ./primes.c) 158
(compileTest ./fib.c)

];

}

Figure 10.2.: Nix expression for building clients of the ATerm library

}

bar = link {...;

libraries = [(import ../aterm {sharedLib = false;}).libATerm];

}

Of course, the hashing scheme ensures that the two variants of the library end up in differ-
ent paths in the store.

Finding dependencies In general, build formalisms require that the parts that constitute
a system are declared. That is, we have to specify the dependencies of every build action.
In Figure 10.1 we could have specified the header files referenced by each C source file
explicitly, e.g.,

compileC {

main = ./afun.c

localIncludes = [./aterm2.h ./memory.h ./util.h ...];

}

An important advantage of Nix over build managers such as Make is that if we forget to
specify a dependency, the build will fail since the compiler will not be able to locate the
missing file (after all, the build takes place in a temporary directory, using only inputs in
the store, and has no reference to the location from which the derivation was instantiated).
Thus, if a build succeeds, we know that we have specified all the dependencies. In Make
on the other hand, it is very common for dependency specifications to be incomplete. This
leads to files not being rebuilt even though they should be, thus causing an inconsistency
between sources and build results.

But specifying all dependencies is a lot of work, so it scales badly in terms of developer
effort. So we wish to discover dependencies automatically. This has to be done in advance,
since if the dependency is not present at build time, it is too late. (Systems like Vesta [92]
on the other hand can discover dependencies during the build.) So we wish to “generate”
part of the Nix expression, e.g., the value of the localIncludes attribute in the example
above.

235



10. Build Management

compileC = {main, localIncludePath ? [], cFlags ? "", sharedLib}:

stdenv.mkDerivation {

name = "compile-c";

builder = ./compile-c.sh;

localIncludes = 159
dependencyClosure {

scanner = file: import (findIncludes file);

searchPath = localIncludePath;

startSet = [main];

};

cFlags = [ ... ];

inherit main;

};

findIncludes = file: stdenv.mkDerivation { 160
name = "find-includes";

builder = ./find-includes.pl;

inherit file;

};

Figure 10.3.: Nix expression for compiling C sources, with automatic header file determi-
nation

This is possible in the Nix expression language, since the import primitive can import
Nix expressions from derivation outputs (page 81). That is, if we have a source file X and
a derivation function that can compute a Nix list expression containing its dependencies,
we can import it at translation time. The function compileC is implemented in this way,
as shown in Figure 10.3. The set of include files 159 is computed by the primop depen-
dencyClosure, which “grows” a set of files startSet using the dependencies discovered by
calling the function scanner for each file. In this case, scanner is a function that returns
the header files included by a file:

import (findIncludes file)

The function findIncludes 160 yields a derivation that builds in its output path a Nix ex-
pression containing the header files included by file, using a builder find-includes.pl that
scans for preprocessor include statements. E.g., if file contains

#include "foo/bar.h"

#include "../xyzzy.h"

then the output of the derivation will be

[ "foo/bar.h" "../xyzzy.h" ]

Since these are relative paths, dependencyClosure will absolutise them relative to the path
of the including file. Of course, these might not be all the dependencies of file, since they
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might in turn include other header files. But dependencyClosure will apply scanner to
those as well, thus eventually obtaining all dependencies1. The result of dependencyClo-
sure is a list of path references, e.g.,

localIncludes = [./main.c ./foo/bar.h ../xyzzy.h];

These files will be copied to the Nix store during the translation to store derivation. The
resulting build will therefore only make use of sources in the store.

Thus parts of Nix expressions can be generated dynamically, during the translation to
store derivations, by leveraging the translation and build machinery. This also allows the
Nix expression language to be “extended” in a way, since if the language does not provide
a way to perform certain computations (e.g., string or list operations), then a derivation and
builder can be written to implement them. Odin [28] has a similar approach to extensibility.

A nice aspect of automatically finding dependencies in Nix is that the dependency scan-
ner does not need to be entirely perfect. For instance, keeping the dependencies of TEX
documents (such as those caused by \input{file} macros) up to date in Make is hard, since
TEX does not provide a tool analogous to GCC’s -MM operation to print out all depen-
dencies of a file. Since TEX is a programming language, writing such a tool is quite dif-
ficult. However, we can also write a simple script that searches for commands such as
\input{file} and a few others using regular expressions. Such a script is not guaranteed to
find all dependencies, but that’s okay. If it does not find all dependencies, the build will
fail deterministically, and the user can add the missing dependencies to the Nix expression
manually.

This thesis is in fact built using Nix. The top-level Nix expression is essentially just

default = runLaTeX {

rootFile = ./doc.ltx;

}

where runLaTeX uses the techniques described above to guess all LATEX source files and
images included by doc.ltx. (The Nix expression also builds derived artifacts such as pretty-
printed code, Graphviz-generated [54] pictures, and so on.)

Relative paths Often, source files expect that their dependencies are in certain relative
paths. If we compile a C source that contains the following line:

#include "../foo.h"

then we can only compile this file if the header file exists in location ../foo.h relative to
the C source file. To compile modules in such languages, the builder must reproduce the
relative source tree as it existed before translation to store derivations.

For this reason, dependencyClosure actually produces a list of dependencies that also
includes their paths relative to the start file. For the example above, it returns2

1The closure thus obtained should not be confused with the closures in the Nix store used in the rest of this
thesis. They are closures of source files relative to the Nix expression (e.g., in the user’s working copy), prior
to translation to store derivations.

2The encoding used here (alternating between paths and strings) is rather poorly typed—if we had a type system.
Clearly, it would be better to use tuples (if the language had them) or attribute sets. However, there is currently
no way to pass attribute sets to builders.
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localIncludes = [

./main.c "./main.c"

./foo/bar.h "./foo/bar.h"

../xyzzy.h "../xyzzy.h"

];

This extra information may seem redundant, but recall that path constants such as ../xyzzy.h
are actually absolutised internally, e.g., to /home/eelco/project/xyzzy.h. And the path is
certainly lost during translation to store derivations (see the processBinding case for path
constants in Figure 5.7). Thus the relative paths, encoded as strings, are actually necessary
to pass the required information to the builder.

The builder of compilerC, compile-c.sh, will use this information to create in its tempo-
rary build directory a hierarchy of symlinks such as

./xyzzy.h

./dotdot/main.c

./dotdot/foo/bar.h

to the actual sources in the Nix store. (A number of dotdot directories equal to the max-
imum number of .. references in relative paths is inserted to make those relative paths
resolve properly.) Compiling ./dotdot/main.c will then yield the desired result.

Building So how do we actually build the derivations defined in, e.g., Figure 10.2? A
tool such as nix-env is inappropriate, since we do not necessarily want to “install” the build
result. Hence there is a small tool nix-build (briefly mentioned in Section 5.6.1), which
is just a wrapper around nix-instantiate and nix-store --realise that builds a Nix expression
and places a symlink to the derivation output (named result) in the current directory. If the
top-level Nix expression yields multiple derivations, the links are numbered. By default,
nix-build builds the expression default.nix in the current directory. E.g., when applied to the
expression in Figure 10.2, we get

$ nix-build

...

$ ./result-2/program

fib(32) == 3524578

since the symlink result-2 refers to the second derivation (the fib.c program, which com-
putes the Fibonacci sequence).

10.2. Discussion

Low-level build management using Nix has numerous advantages over most build man-
agers (discussed below). Of course, most of these are exactly the advantages that it also
has for deployment, showing that build management and deployment are very much over-
lapping problems.

• It ensures that dependency specifications are complete (though most dependencies
can be found automatically).

238



10.2. Discussion

• All inputs, not just source files but also flags, scripts, tools, etc., are dependencies.
Running nix-build is guaranteed to produce a result consistent with the sources and
the Nix expression. In Make, by contrast, changes to the build actions do not trigger
recompilation. This is why Make users have a habit of running make clean often,
just to be on the safe side.

• Since dependencies are complete and builds produce no output other than in out,
parallel and distributed builds are safe.

• There is no pollution of the working copy in which the source resides. Thus there is
no need for an operation like make clean. Garbage collection takes care of freeing
disk space.

• Due to locking (page 98), it is safe to run multiple Nix builds in parallel, even on the
same Nix expression.

• It is safe to edit sources while a build is in progress. In contrast, with Make we can
run into race conditions, e.g., if we start a big LATEX job or C++ compile, then edit
the source in Emacs and save while the build is in progress. The build will use the
old sources, but subsequent Make invocations will believe that the output is up to
date.

• The Nix expression language makes it very easy to specify variants. Since it is
a functional language, almost any repetitiveness can be abstracted away. So the
functionality provided by tools such as Automake and Libtool can be implemented
through Nix expression libraries.

• If a build succeeds, we know all the source dependencies in the working copy, so we
know which files at the least must be placed under version management.

• As mentioned, the automatic determination of header file dependencies is also safer
than what we can get in Make derivates. It is common to use tricks like gcc -MM
to find header file dependencies automatically in Makefile rules, but this has subtle
failure conditions. For instance, gcc -MM causes the found header files to be declared
as dependencies, but it neglects to add the files that were not found. If the C compiler
search path contains directories A and B, and a header X is found in B/X , then the
non-existent file A/X should also be a dependency. After all, if A/X were to be
added by the user, a rebuild would be necessary. Since we recompute the closure
of the dependencies on every invocation, the new file A/X will be found and will
trigger a rebuild.

However, there is an unresolved problem with Nix as a build manager: how can we use it
recursively, that is, from within a Nix builder? It is quite common for a Nix builder to call
conventional build tools such as Make. That is what almost all components in Chapter 7
do. But can we call nix-build in a builder? The problem is that the Nix store is global, and
nix-build would compute and create all sorts of paths that are not known inputs or outputs
of the current Nix build. A solution might be for the recursive Nix invocations to use a
private store (e.g., a subdirectory of the builder’s temporary directory).
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Instead of recursive Nix builds, the alternative is to have one gigantic build graph. For
instance, if we are building a component that needs a C compiler, the Nix expression for
that component simply imports the Nix expression that builds the compiler. The problem
with this approach is scalability: the resulting build graphs would become huge. The graph
for a simple component such as GNU Hello would include the build graphs for dozens of
large components, such as Glibc, GCC, etc. The resulting graph could easily have hundreds
of thousands of nodes, far exceeding the graphs typically occurring in deployment (e.g., the
one in Figure 1.5). However, apart from its efficiency, this is possibly the most desirable
solution because of its conceptual simplicity. Thus it is interesting to develop efficient
ways of dealing with very large build graphs.

10.3. Related work

The archetypical build manager is Make [56], introduced in Seventh Edition Unix (1979).
According to Stuart Feldman’s 2003 ACM Software System Award citation, “there is prob-
ably no large software system in the world today that has not been processed by a version
or offspring of MAKE.” It builds systems from a Makefile that describes a dependency
graph using rules of the form

targets : dependencies

actions

with the semantics that if the files targets do not exist or are older than the files
dependencies, then the shell commands listed in actions should be run to (re-)build targets.
Makefiles have some abstraction facilities to reduce repetitive rules, such as pattern rules
(generic rules that are applied automatically on the basis of file extensions) and variables.

Make has spawned dozens of derivates. Some are backwards-compatible extensions,
such as BSD Make and GNU Make [68]. Others are not, e.g., Plan 9’s mk [96], AT&T
and Lucent’s NMake [70], Microsoft’s NMake, Jam [148], and so on. Some of these add
support for parallel builds [7], have syntactic sugar to allow more concise Makefiles, or
have built-in support for languages such as C and C++ (e.g., to find dependencies). There
are also tools that generate Makefiles from higher-level specifications, e.g., Automake [65,
172]. The generators unfortunately do not shield the user from the lower layers; it is the
user’s job to map problems that occur in a Makefile back to the high-level specification
from which it was generated.

Ant [63] is a very popular build manager, but its popularity stems mainly from the fact
that it comes with a large set of useful tasks for Java development, contrary to Make.
(Make’s built-in rules essentially reflect the Unix programming language landscape of
1979.) However, Ant in many ways is a step backwards compared to Make3. The (XML-
based) build formalism is actually quite crude, and describes a simple partial ordering of
build tasks. Ant’s core provides no incremental build facilities; these must be implemented
by tasks themselves. Ant however shows that it is important for a build tool to have good
libraries for building common languages.

3Ant’s homepage [63] lists two reasons for its development: Make uses non-portable shell commands, and
Makefiles use TAB characters. This indicates that Ant’s development was not inspired by any fundamental
reflection on Make’s limitations.
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An interesting performance improvement is provided by optimistic Make [21], which
starts building targets before the user has issued the make command, putting unused CPU
cycles to good use. A median reduction in response time as high as a factor of 5.1 is
reported.

However, none of these tools solve Make’s fundamental problems, which are:

• A lack of abstraction facilities. The abstraction mechanisms—variables and pattern
rules—are all global. Hence, if we need to specify different ways of building tar-
gets, we cannot use them, unless we split the system into multiple Makefiles. This,
however, creates the much greater problem of incomplete dependency graphs [121].
[71] shows some of the rather clumsy techniques used for stretching Make’s expres-
siveness.

• A lack of support for variant builds. Makefile variables allow variability to be ex-
pressed, but variants will overwrite each other unless tortuous hacks are used to
arrange otherwise.

• The inability to ensure complete dependency specifications. If builds are not per-
formed in isolation but rather in the workspace that holds all the sources, there is no
way to prevent undeclared dependencies (unless file system calls are intercepted, as
discussed below).

However, there are a number of build managers that do fundamentally improve on Make.
Odin [28, 29] has a functional language to describe build actions (queries). (Indeed, a reim-
plementation of Odin’s semantics as an embedded domain-specific language in Haskell is
presented in [150].) For example, the expression hello.c denotes a source, while hello.c
:exe denotes the executable obtained by compiling and linking hello.c. Odin also supports
variants automatically. Variant builds can be expressed easily, e.g., hello.c +debug :exe.

Vesta (already discussed in Section 7.6) has a build manager, the Vesta evaluator, that
builds software from specifications written in the System Description Language (SDL),
which is a functional language [94]. Since Vesta uses a virtual (NFS-based) file system, it
can detect all dependencies used by a build action. The results of builds are cached and can
be shared between users. Since the language is functional, it is easy to specify and build
variants. Thus Vesta solves all three of the Make limitations listed above. The price is the
use of a virtual file system and the integration with a specific version management system.

Amake [9, 8, 164] is the build tool for the Amoeba distributed operating system. Like
Odin, it separates the specification of build tools and system specifications. Given a set
of sources Amake automatically completes the build graph, that is, it finds instances of
tool definitions that build the desired targets from the given sources. This is contrary to
the functional model of explicit tool application in Odin, Vesta, and Nix. The obvious
advantage is that specifications become shorter; the downside is that it becomes harder to
specify alternative ways of building, and to see what’s going on.

Maak [46], by the author of this thesis, was in many ways a precursor to Nix. It has a
functional language similar to the Nix expression language, and supported build variability
automatically; in fact, the language has some features that the Nix expression language
does not, such as automatic propagation of attributes. The Nix language backs away from
this level of expressivity since a) the Nix language is intended foremost for deployment
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instead of build management, and so involves less complicated build descriptions; and b)
concise syntax is not always a blessing; it may make the language harder to understand.

Also, Maak allows circular dependencies, a classical “hard” problem for build man-
agers. A notable example is LATEX, which requires any number of runs until certain out-
puts stop changing. Circular dependencies are fundamentally incompatible with Nix, since
store derivations describe a static set of build actions from which all variability has been
removed (and in the extensional model, the output paths must be known in advance). I now
feel that circular dependencies are an unnecessary complication for build managers: they
occur quite seldom—in fact, LATEX is the only common example—and so are better fixed
by wrapping the offending tool in a script that executes it an appropriate number of times.

The Maak paper [46] also introduced the notion of transparent source/binary deploy-
ment, but in the absence of a cryptographic hashing scheme, it used nominal version
equality, which is of course less safe. But Maak’s fundamental problem was that it could
not ensure complete dependency specifications, since (like Make) it performed builds “lo-
cally”, in the workspace holding the sources. (On Linux, it did have a feature to use the
strace command to intercept file system accesses, allowing dependency detection.) This
prompted the development of a component store based on cryptographic hashing.
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The main objective of the research described in this thesis was to develop a system for
correct software deployment that ensures that the deployment is complete and does not
cause interference. This objective was successfully met in the Nix deployment system, as
the experience with Nixpkgs described in Section 7.1.5 has shown.

The objective of improving deployment correctness is reached through the two main
ideas described in this thesis. The first is the use of cryptographic hashes in Nix store
paths. It gives us isolation, automatic support for variability, and the ability to determine
runtime dependencies. This however can be considered an (important) implementation
detail—maybe even a “trick”. However, it addresses the deployment problem at the most
fundamental level: the storage of components in the file system.

The second and more fundamental idea is the purely functional deployment model,
which means that components never change after they have been built and that their build
processes only depend on their declared inputs. In conjunction with the hashing scheme,
the purely functional model prevents interference between deployment actions, provides
easy component and composition identification, and enables reproducibility of configura-
tions both in source and binary form—in other words, it gives predictable, deterministic
semantics to deployment actions.

Nix is a work in progress. The implementation of the extensional model (Chapter 5) is
in use. The experience of the Nix Packages collection shows that it works very well for its
primary goal of software deployment (Chapter 7), though more experience is necessary to
make conclusive statements about the scalability of the purely functional model. The inten-
sional model (Chapter 6) exists in prototype form and must be fully implemented. Services
deployed using Nix (Chapter 9) are in production use, as is a build farm (Chapter 8). Build
management (Chapter 10) works, as its properties are really a direct application of Nix,
but more work is necessary to improve its usability (e.g., by providing good libraries for
common languages and tasks) and scalability.

Our experience with Nix over the last two years allows the following conclusions to be
drawn:

• The purely functional deployment model implemented in Nix and the cryptographic
hashing scheme of the Nix store in particular give us important features that are
lacking in most deployment systems, such as complete dependencies, complete
deployment, side-by-side deployment, atomic upgrades and rollbacks, transparent
source/binary deployment and reproducibility (see Section 1.5).

• The cryptographic hashing scheme is effective in preventing undeclared dependen-
cies, assuming a fully Nixified environment. In other environments, the techniques
of Section 7.1.3 are successful in preventing most impurities.

• Nix places a number of assumptions on components (Section 6.8), but the large and
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varied set of components deployed through Nix shows that these assumptions are
quite reasonable (Section 7.1.5).

• Hash rewriting is a technique that intuitively might appear unlikely to work, but in
fact does work. It enables the intensional model, which is a breakthrough in that
it enables secure sharing, multiple output paths, and some future benefits discussed
below.

However, there are also a number of things that we cannot conclude on the basis of our
current experience:

• That a functional language is a good way to describe components and compositions.
Certainly such a language makes it possible and easy to describe variability, and
function arguments seem a natural way to describe dependencies. But the usabil-
ity of functional languages (and the Nix expression language in particular) has not
been demonstrated; all users of the Nix expression language had prior exposure to
functional languages such as Haskell.

• Nix opens up the perspective of unifying the various points on the software build
and deployment timeline into a single formalism; e.g., Nix is not just a deployment
tool, but as we have seen in Chapter 10, it can replace “low-level” build management
tools such as Make. This is good because it prevents “impedance mismatch” between
build management and deployment. For instance, it is not necessary to specify the
same dependency both in the build formalism and the deployment formalism. But it
remains to be seen whether low-level build management can be made scalable. Also,
it is necessary to subsume the source configuration stage, currently implemented by
tools such as Autoconf; this has not been done yet.

Finally, there are also a number of reasonable criticisms that can be levelled at the purely
functional model:

• Efficient upgrading remains a problem. Using patch deployment, upgrades can be
done efficiently in terms of network bandwidth. But a change to a fundamental de-
pendency can still cause disk space requirements to double. This is a real problem
compared to destructive updates. However, it can be argued that disk space is abun-
dant, and that software components no longer dominate disk space consumption.

• Preventing undeclared dependencies is good, but the lack of scoped composition
mechanisms lessens its usefulness (as discussed on page 173).

• Most of our experience with Nix has been on Linux, which allows a self-contained,
pure Nixpkgs (page 169). That is, every dependency of the components in Nixp-
kgs can be built and deployed through Nix. This is an ideal situation that cannot
be achieved in most other operating systems. A GUI application on Mac OS X
will typically have a dependency on the Cocoa or Carbon GUI libraries. Since
these are closed source and cannot be copied legally, we can neither build them
nor use the techniques of Section 7.1.4 to deploy them in binary form. Thus we
are forced to resort to impurity (e.g., by linking against the non-store path /Sys-
tem/Library/Frameworks/Cocoa.framework/...), reducing Nix’s effectiveness.
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11.1. Future work

There are a number of possibilities for further research, as well as a several remaining
practical issues.

A fully Nixified system Since Nix works best in a “pure” environment where all com-
ponents are built and deployed by Nix, it is natural to consider an operating system dis-
tribution on that basis; that is, a Unix system (probably based on Linux or FreeBSD) that
has no /bin, /lib, /usr, etc.—all components are in /nix/store. In addition, the configuration
of the system can be managed along the lines of the services in Chapter 9. For instance,
the configuration of which services (such as daemons) should be enabled or disabled can
be expressed in a Nix expression that builds a component that starts and stops other com-
ponents passed as build-time inputs. To change the configuration, the Nix expression is
changed and rebuilt.

A pure1 Nix-based Linux system (tentatively called NixOS) is currently in active devel-
opment and in a bootable state. Building components in this pure environment has already
revealed a few impurities in Nixpkgs. On the other hand, the number of such impurities
has turned out to be surprisingly low: once NixOS was up and running, it took only two
one-line modifications (to stdenv, no less!) to get Firefox and all its dependencies to build.

The intensional model There is a prototype implementation of the intensional model
that shows that hash rewriting works in practice (i.e., does not break components), but the
prototype is not usable yet. A full implementation is necessary to answer a number of open
questions. In particular, what is a good policy for path selection (page 149)?

The intensional model has the potential to enable better build management. A common
efficiency problem in incremental building is that a small change to some file causes many
rebuilds. For instance, a change to a C header file (say, config.h) forces us to rebuild all
source files that include it. This is the case even for source files that include the header but
are unaffected by the change.

Redundant rebuilds can be prevented in the intensional model by making the C prepro-
cessor invocation an explicit build step. For source files that are unaffected by the header
change, the preprocessed output will remain unchanged. We can optimise the build algo-
rithm as follows. If a derivation d1 differs only from a derivation d2 in subderivations that
yielded the same output, we can just copy the output of d2 to d1.

A language for builders We need to find a better way to write builders. Shell scripts
are simply not a good language. The Unix shell is quite good as component glue—which
is what we use it for—but it is not safe enough. It is in fact virtually impossible to write
“correct” shell scripts that do not fail, unexpectedly, for banal reasons on certain inputs or
in certain situations. Here are some of the main problems in the language:

• Variable uses (e.g., $foo) are “interpolated” by default. This is the reason why most
shell scripts fail on file names that contain spaces or newlines. The same applies for
automatic “globbing” (expansion of special characters such as "*").

1With the exception of /bin/sh, which is required by Glibc and several standards.
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• Undefined variables do not signal an error.

• Non-zero exit codes from commands are ignored by default. Worse, it is extremely
hard to catch errors from the left-hand sides of pipes.

In fact, the whole Unix tool chain is not conducive to writing correct code:

• Command-line arguments in Unix are usually overloaded, e.g., there is an ambiguity
in most Unix tools between options and file names starting with a dash.

• The pipe model is that all tools read and write flat text files without a well-defined
structure. This makes it hard to extract relevant data in a structured way. Typically,
regular expressions in conjunction with grep, sed, awk and perl are used to extract
data, but this tends to be brittle—the regular expressions hardly ever cover all possi-
bilities.

• Similarly, the fact that options are flat strings makes it hard to pass structure, neces-
sitating escaping. E.g., the command grep -q "$filename" to see whether a certain file
name occurs in a list fails to take into account that grep interprets some characters
in $filename as regular expression meta-characters.

These problems are far from specific to Nix builders. They have been the cause of many
serious bugs, including security problems. So what we need is a shell with a clean seman-
tics founded on the principle of least surprise [140], and a tool set based on the exchange of
structured data (e.g., XML or ATerms). MSH (the Microsoft Shell) may be a good model.

It is also necessary to improve the interaction between Nix expressions and builders.
The mechanism by which information is communicated to builders is rather crude, namely,
through environment variables that only allow flat strings to be passed. It is much better to
pass structured information, such as attribute sets and lists. An obvious way is to convert
such expressions to XML (which is especially attractive in conjunction with an XML-based
tool set).

A type system A type system for the Nix expression language is desirable. Of course,
to the greatest extent possible types should be inferred. We probably need a basic Hindley-
Milner type system [122] extended with extensible records [111] to support attribute sets.

Efficient storage Binary patch deployment greatly reduces the bandwidth needed to de-
ploy binary upgrades, but the upgraded components still need to be stored in full, and an
amount of CPU time linear in the size of the upgraded components is also required. These
problems may be solved by using a file system that supports delta storage [115], i.e., that
can store file revisions as deltas to previous revisions. Actually, for the Nix store, we need
a file system where revisions can refer to revisions of other files. Concretely, we need a
kernel API copy(pdst , psrc, patch) that creates a path pdst with contents equal to those of
psrc with patch applied. Then FSO creation using patches takes disk space and CPU time
linear in the size of the patch, not the resulting FSO.
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<item id='zlib-1.2.1-security' type='security'>

<condition>

<within>

<traverse> <true /> </traverse>

<hasAttr name='outputHash' value='ef1cb003448b...' />

</within>

</condition>

<reason>

Zlib 1.2.1 is vulnerable to a denial-of-service condition. See

http://www.kb.cert.org/vuls/id/238678. Upgrade to 1.2.2.

</reason>

<severity class="server" level="critical" />

<severity class="client" level="medium" />

</item>

Figure 11.1.: A blacklist entry

Blacklisting The purely functional model creates a serious problem in some situations:
how can we be sure that all uses of a certain “bad” component have been eliminated? For
example, suppose that we find that a certain fundamental component (say, Zlib) contains
a security bug [1]. This component is used by many other components. Thus we want to
ensure that we upgrade all installed applications in all user environments to new instances
that do not use the bad component anymore. Of course, we can just run nix-env -u "*"
and hope that this gets rid of all bad components, but there is no guarantee of that, espe-
cially if we have installed components from arbitrary third parties (i.e., components not
in Nixpkgs). The purely functional model’s non-interference property now bites us. Thus
there should be a generic mechanism that detects uses of bad components on the basis of a
blacklist that describes these components.

A simple prototype of this idea has been implemented. It evaluates an XML specification
that contains declarations such as the one shown in Figure 11.1. This example specifies
that any output path built from a derivation graph that at any point used the Zlib 1.2.1
source distribution (as identified by its cryptographic hash, ef1cb003448b...), is tainted.
The condition is applied to every element of every user environment, and prints out a
warning if a match is found. Note that since the condition inspects the derivation graph
(found through the deriver link described in Section 5.5.1), it also matches statically linked
uses of Zlib. Thus the blacklisting approach finds dangerous uses of libraries that cannot
be fixed by destructive upgrading in conventional deployment models.

A blacklisting approach should also specify what should be done if a match is found,
which may depend on the type of the machine, user environment, or application: for a
server the Zlib bug is critical, for a client less so.

Upgrading in the intensional model The technique of hash rewriting in the intensional
model (Section 6.3.2) allows something very similar to destructive upgrading in conven-
tional systems, but in safe way. We can generically upgrade all components that reference
some “bad” path p to a “good” path p′, by rewriting (using a variation of algorithm resolve
in Section 6.4.1) every use of p to p′. The difference with the normal mode of upgrading
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11. Conclusion

in Nix (deploying replacement Nix expressions) is that no Nix expressions are necessary.
That’s also the problem of this technique: the resulting components do not have a deriver,
that is, they do not necessarily correspond to the output of any known derivation. But it
is not destructive: since resolve works by rewriting copies, the old components are still
available. Thus, atomicity and the ability to roll back still hold.

Feature selection and automatic instantiation Nix supports component variability
both in the expression language and at the store level, but current deployment policies
are not very good at making it available to users. For instance, nix-env does not provide
a way to pass arguments to functions; the top-level Nix expression should evaluate to a
set of derivations. Similarly, deployment policies such as channels do not support local
customisation.

At the very least, tools such as nix-env should be extended to allow variation points
to be bound (i.e., to allow the user to set parameters). One can imagine this being done
through a nice graphical user interface, e.g., as in the Linux kernel configuration tool, Con-
sul@GUI [13] or the Software Dock [85]. Such interfaces lead to an interesting problem: if
the user binds some but not all of the variation points, how can we find component instances
or compositions that satisfy all constraints (as expressed by assertions in Nix expressions)?
This is of course an NP-complete problem (since it is essentially just the boolean satisfia-
bility problem [35]), but that may not be a problem in practice. For example, CML2 [139]
finds Linux kernel instances satisfying user-specified constraints automatically, and Binary
Decision Diagrams (BDD) also appear to be a useful technique for this purpose [170].
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Samenvatting

De installatie van software en de daarmee samenhangende activiteiten lijken altijd te mis-
lukken. Zo komt het regelmatig voor dat het installeren of upgraden van een software-
toepassing leidt tot het falen van eerder geïnstalleerde toepassingen. Of het blijkt dat een
applicatie afhankelijk is van componenten die niet aanwezig zijn op het systeem. Het is
meestal ook niet mogelijk om dit soort acties terug te draaien als ze naderhand niet blij-
ken te bevallen. Deze activiteiten worden aangeduid als software deployment, d.w.z. het
in gebruik nemen of “uitrollen” van software. Het onderwerp van dit proefschrift is de
ontwikkeling van betere technieken om deployment te ondersteunen.

De onderliggende problemen die de deploymentmalaise veroorzaken zijn een gebrek
aan isolatie tussen componenten, en het feit dat het lastig is om afhankelijkheden (depen-
dencies) tussen componenten correct te identificeren. Voorts schaalt deployment moeilijk
op. Zo toont Figuur 1.5 op pagina 10 de afhankelijkheden van de browser Mozilla Firefox.
Elke component kan in potentie de deployment van Firefox doen mislukken. Zo kan de
component afwezig zijn, aanwezig zijn in een incompatibele versie, of aanwezig zijn in
een compatibele versie maar met verkeerde compilerinstellingen gebouwd zijn.

Er zijn talloze deploymenttechnologieën, in de Unix-wereld ook wel package managers
genaamd. Ik noem met name RPM, Debian APT, Gentoo Portage, .NET assemblies en
Mac OS application bundles. Het belang van deployment—en het verlangen naar verbete-
ringen op dit vlak—wordt onderstreept door het feit dat Linux-distributies zich in de eerste
plaats onderscheiden in hun package-managementsystemen. Deze hebben echter allemaal
ernstige tekortkomingen. Ze zijn niet in staat om volledige afhankelijkheidsspecificaties af
te dwingen, ze ondersteunen niet de aanwezigheid van meerdere versies van een compo-
nent, enzovoorts.

Er is tot op heden betrekkelijk weinig onderzoek geweest naar deployment, en vrijwel
helemaal niet naar de low-level aspecten zoals de opslag van componenten in het bestands-
systeem (waar isolatie immers gerealiseerd moet worden). In plaats daarvan is vooruitgang
op dit gebied voornamelijk geboekt door systeembeheerders en Unix-hackers. Dit is niet
verbazingwekkend: deployment is een onderdeel van het vakgebied van systeembeheer,
een onderwerp dat volgens Pike [136] vooralsnog “deeply difficult” is.

Het Nix deploymentsysteem

De Nix store Dit proefschrift beschrijft een betere aanpak, een zogenaamd puur functi-
oneel deploymentmodel. Zo’n model is geïmplementeerd in een deploymentsysteem ge-
naamd Nix. Nix slaat componenten in isolatie van elkaar op in een Nix store, een speciale
directory in het bestandssysteem.

In Nix wordt elke component opgeslagen onder een speciaal pad zoals /nix/store/-
2zbay49r2ihrznny6vbrcjvils4nqm1w-firefox-1.0.7. Het deel 2zbay49r2ihr... is een crypto-
grafische hash van alle invoer die heeft bijgedragen aan de berekening van de component.
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Daarom heet het model puur functioneel: net als in puur functionele programmeertalen
wordt het resultaat van een bouwactie alleen bepaald door de opgegeven invoer. Crypto-
grafische hashes hebben de plezierige eigenschap dat het erg moeilijk is om twee verschil-
lende sets van invoeren te vinden die dezelfde hash opleveren. Hierdoor kunnen we er in
de praktijk vanuit gaan dat als twee componenten op enige wijze verschillen, ze een ver-
schillende hash opleveren en dus op verschillende locaties in het bestandssysteem worden
opgeslagen. Dit zorgt voor de gewenste isolatie tussen componenten. De installatie van een
applicatie kan niet langer leiden tot de beschadiging van reeds geïnstalleerde applicaties.

Het gebruik van hashes lost ook het andere grote deploymentprobleem op—onvolledige
afhankelijkheidsinformatie. Ten eerste voorkomt het ongedeclareerde afhankelijkheden
tijdens bouwtijd. Immers, bouwtools zoals compilers en linkers zoeken niet standaard in
paden zoals /nix/store/2zbay49r2ihr...-firefox-1.0.7.

Ten tweede maakt het het ons mogelijk om te scannen naar de afhankelijkheden die
kunnen optreden gedurende de executie van een component. Dit houdt in dat we de binaire
inhoud van een component doorzoeken op de aanwezigheid van de hashonderdelen van
de bestandsnamen van andere componenten. Stel dat de Nix store een GUI-component
/nix/store/4kd0ma2pxf6w...-gtk+-2.8.6 bevat (een GUI-bibliotheek). Als we vervolgens de
tekenreeks 4kd0ma2pxf6w... tegenkomen in de inhoud van /nix/store/2zbay49r2ihr...-firefox-
1.0.7, kunnen we concluderen dat de Firefox-component een afhankelijkheid heeft op
/nix/store/4kd0ma2pxf6w...-gtk+-2.8.6. De geldigheid van deze aanpak motiveer ik door
middel van een analogie met technieken die worden gebruikt in de implementatie van pro-
grammeertalen, in het bijzonder conservatieve garbage collection (hoofdstuk 3).

De scanaanpak zorgt voor volledige kennis van de afhankelijkheden tussen componen-
ten. Deployment van een component verloopt correct indien we de afsluiting (closure)
van de component onder de afhankelijkheidsrelatie kopiëren. Voorts kunnen componenten
veilig verwijderd worden: een component mag alleen verwijderd worden indien er geen
componenten in de store meer naar verwijzen. Het is zelfs mogelijk om ongebruikte com-
ponenten volledig automatisch weg te laten gooien (garbage collection).

Abstractie over hashes Uiteraard dienen gebruikers en ontwikkelaars niet geconfron-
teerd te worden met bestandsnamen met eerdergenoemde hashes. Dat is gelukkig ook
niet het geval. Ze worden verborgen voor gebruikers door zogeheten user environments
die een verzameling “geactiveerde” componenten beschikbaar maken voor de gebruiker.
User environments zijn zelf ook (automatisch gegenereerde) componenten. Ze kunnen dus
gebroederlijk naast elkaar bestaan. Dit stelt de gebruikers van een systeem in staat om ver-
schillende user environments te gebruiken. Ook maakt het een rollback mogelijk waarbij
installatie- of upgradeacties teruggedraaid worden. Dit is een belangrijke eigenschap in
bijvoorbeeld serveromgevingen.

Evenmin hoeven ontwikkelaars rechtstreeks met hashes te werken. Nix componenten
worden namelijk gebouwd uit Nix-expressies (hoofdstukken 2 en 4). Dit is een eenvoudige
functionele taal die beschrijft hoe componenten gebouwd en samengesteld moeten worden.
Uit deze beschrijvingen berekent Nix de paden waar de componenten opgeslagen worden.

Transparant source/binary deploymentmodel Het uitrollen van Nix-expressies naar
doelmachines levert een source-deploymentmodel op, omdat ze beschrijven hoe compo-
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nenten uit broncode gebouwd kunnen worden. Zo’n model—ook toegepast in deploy-
mentsystemen zoals Gentoo Linux—is flexibel en prettig voor ontwikkelaars, maar ook
erg resource-intensief: het kost dikwijls veel tijd en schijfruimte om een component uit
broncode te bouwen. Daarentegen is een binair deploymentmodel, waarin componenten
in binaire vorm worden gedistribueerd naar doelmachines, efficiënter maar ook minder
flexibel.

Nix combineert het beste van beide werelden door middel van een transparant sour-
ce/binary deploymentmodel. Softwaredistributeurs of systeembeheerders bouwen een Nix-
expressie en plaatsen de resulterende binaire componenten op een centrale server, ge-
indexeerd onder hun hashes. Doelmachines kunnen vervolgens het bestaan van deze voor-
gebouwde componenten registreren. Deze registraties heten substituten. De bouw van
een Nix-expressie kan dan worden “kortgesloten” indien voor het te bouwen pad (zoals
/nix/store/2zbay49r2ihr...-firefox-1.0.7) een substituut bekend is die opgehaald en uitgepakt
kan worden. Op die manier verandert source-deployment op een voor de gebruiker trans-
parante wijze automatisch in binaire deployment.

Extensioneel en intensioneel model Het proefschrift beschrijft twee subtiel verschil-
lende modellen voor de implementatie van Nix. Het oorspronkelijke en momenteel ge-
bruikte model is het extensionele model (hoofdstuk 5), waarin store-paden vooraf worden
berekend uit Nix-expressies. Dit is nodig omdat het pad van een component bekend moet
zijn vóórdat de component gebouwd wordt. Het maakt het echter lastig om een Nix store te
delen tussen meerdere, elkaar wellicht wederzijds niet vertrouwende gebruikers. Immers,
een kwaadwillende gebruiker kan zomaar een onzinnig substituut registreren voor een pad
dat daarna geïnstalleerd wordt door een andere gebruiker.

Het intensionele model (hoofdstuk 6) heft deze beperking op door alle componenten
op een inhoudsgeadresseerde wijze op te slaan. Hierbij wordt de naam van een compo-
nent bepaald door de cryptografische hash over de inhoud van de component in plaats van
over de Nix-expressie. Twee componenten kunnen dus alleen op dezelfde plaats in het be-
standssysteem worden opgeslagen als ze inhoudelijk (intensioneel) gelijk zijn. Gebruikers
kunnen hierdoor verschillende substituten registreren voor dezelfde Nix-expressie. Het
resultaat is een Nix store die op veilige wijze door gebruikers gedeeld kan worden.

Toepassingen

De voornaamste toepassing van Nix is deployment (hoofdstuk 7). We hebben Nix ge-
bruikt om meer dan 278 bestaande Unix-componenten uit te rollen. Deze pakketten zijn
onderdeel van de Nix Packages collection (Nixpkgs, sectie 7.1). Nixpkgs dient zowel ter
validatie van onze aanpak, als om gebruikers van Nix een bruikbare basis van pakketten
aan te bieden waarop verder ontwikkeld kan worden.

Nix is echter ook toepasbaar op een aantal aan deployment grenzende probleemgebie-
den. Het streven is om zoveel mogelijk aspecten van het bouw- en deploymentproces onder
één enkel formalisme te brengen, namelijk Nix-expressies.

Continue integratie en releasemanagement (hoofdstuk 8) Het is een goede gewoonte
om tijdens het ontwikkelen van grote softwaresystemen het samenvoegen van de verschil-
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lende onderdelen niet te lang uit te stellen, daar dit kan leiden tot zogenaamde ‘Big Bang
integratie” waar in een laat stadium geconstateerd wordt dat de onderdelen niet samen-
werken. Bij continue integratie worden componenten voortdurend gebouwd vanuit het
versiebeheersysteem, dus iedere keer dat een ontwikkelaar een verandering toepast. Een
build farm kan deze praktijk ondersteunen. Dit is een verzameling machines die de softwa-
re bouwt, typisch onder verschillende besturingssystemen en architecturen. Een build farm
is niet alleen nuttig om software te testen, maar kan ook meteen releases van de software
maken—kant en klare pakketten die door gebruikers geïnstalleerd kunnen worden.

Het beheer van zo’n build farm is vaak nogal tijdrovend, omdat elke gewenste verande-
ring in de softwareomgeving (zoals een nieuwe versie van een compiler) op elke machine
doorgevoerd moet worden. Dit kan echter geautomatiseerd worden met Nix, omdat het
op een transparante wijze Nix-expressies voor meerdere platformtypes kan bouwen. Nix
voorkomt ook dat componenten die niet gewijzigd zijn steeds opnieuw gebouwd worden.
Tenslotte kunnen de in een op Nix gebaseerde build farm geproduceerde releases op be-
trouwbare wijze via Nix uitgerold worden.

Service deployment (hoofdstuk 9) Het uitrollen van draaiende netwerkdiensten (servi-
ces) zoals webservers is een erg tijdrovend en meestal slecht beheerd proces. Veel acties—
het installeren van software, aanpassen van configuratiebestanden, enz.—worden met de
hand uitgevoerd en zijn daardoor niet automatisch reproduceerbaar. Hierdoor is het lastig
om meerdere versies van een dienst (bijvoorbeeld test- en productieversies) naast elkaar te
draaien, of om een rollback uit te voeren naar een eerdere toestand.

We kunnen dit probleem met Nix voor een groot gedeelte aanpakken door de relatief
statische delen van een dienst (nl. de software en de configuratiebestanden) als een Nix-
component te behandelen. Dit wil zeggen dat ze vanuit een Nix-expressie gebouwd worden
en in de Nix store terecht komen. Alle voordelen van Nix voor deployment—zoals het
gebruik van meerdere versies naast elkaar, reproduceerbaarheid, rollbacks, enz.—zijn op
die manier onmiddelijk van toepassing op de uitrol van diensten. De dynamische toestand
van een dienst (zoals databases) is echter niet onder Nix-beheer.

Build management (hoofdstuk 10) Het bouwen van software is een klassiek probleem
dat typisch door tools zoals Make (1979) wordt opgelost. Zulke bouwtools hebben ech-
ter allerlei beperkingen die veel lijken op die van deploymentsystemen: ze kunnen niet
garanderen dat afhankelijkheidsspecificaties volledig zijn, ze hebben slechte ondersteu-
ning voor meerdere varianten van bouwacties, enz. Dit is niet verrassend, omdat bouwen
en deployment goeddeels hetzelfde probleem zijn, met dien verstande dat bouwtools ty-
pisch betrekking hebben op “kleine” componenten (zoals individuele broncodebestanden),
terwijl deploymentsystemen te maken hebben met “grote” componenten (zoals complete
programma’s). Het is dus vrij eenvoudig om Nix te gebruiken als een Make-vervanger,
simpelweg door Nix-expressies te schrijven die voornoemde “kleine” componenten bou-
wen.
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