
Efficient Upgrading in a Purely Functional
Component Deployment Model

CBSE 2005

Eelco Dolstra
eelco@cs.uu.nl

Institute of Information & Computing Sciences
Utrecht University, The Netherlands

May 15, 2005

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Motivation

I The Nix deployment system has many nice features:
I Safe, automatic coexistance of versions/variants.
I Reliable dependencies.
I Multiple concurrent configurations.
I Atomic upgrades/rollbacks.
I Safe garbage collection.
I Transparent source/binary deployment.

I Nix has a purely functional deployment model.

I This appears to make distributing upgrades much harder.

I This paper show that that is not the case.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Nix

/nix/store

caef3a491505...-glibc-2.3.3

lib

bd6593219f8d...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

71540b396431...-firefox-1.0

bin

firefox

lib

firefox-bin

libc.so.6

I Components reside in the Nix store.

I Component names are cryptographic
hashes of all build inputs.

I Components statically reference each
other.

I This gains us:
I Isolation
I Side-by-side versioning
I Variability for free
I Dependency scanning

I Components never change after they
have been built.

I ⇒ Purely functional model.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Nix

/nix/store

caef3a491505...-glibc-2.3.3

lib

bd6593219f8d...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

71540b396431...-firefox-1.0

bin

firefox

lib

firefox-bin

libc.so.6

I Components reside in the Nix store.

I Component names are cryptographic
hashes of all build inputs.

I Components statically reference each
other.

I This gains us:
I Isolation
I Side-by-side versioning
I Variability for free
I Dependency scanning

I Components never change after they
have been built.

I ⇒ Purely functional model.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Nix

/nix/store

caef3a491505...-glibc-2.3.3

lib

bd6593219f8d...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

71540b396431...-firefox-1.0

bin

firefox

lib

firefox-bin

libc.so.6

I Components reside in the Nix store.

I Component names are cryptographic
hashes of all build inputs.

I Components statically reference each
other.

I This gains us:
I Isolation
I Side-by-side versioning
I Variability for free
I Dependency scanning

I Components never change after they
have been built.

I ⇒ Purely functional model.

Contents of firefox-bin

...

2e 36 00 6c 69 62 73 74 64 63 2b 2b 2e 73 6f 2e |.6.libstdc++.so.|

36 00 6c 69 62 67 63 63 5f 73 2e 73 6f 2e 31 00 |6.libgcc_s.so.1.|

6c 69 62 70 74 68 72 65 61 64 2e 73 6f 2e 30 00 |libpthread.so.0.|

6c 69 62 63 2e 73 6f 2e 36 00 5f 5f 63 78 61 5f |libc.so.6.__cxa_|

61 74 65 78 69 74 00 5f 65 64 61 74 61 00 5f 5f |atexit._edata.__|

62 73 73 5f 73 74 61 72 74 00 2f 6e 69 78 2f 73 |bss_start./nix/s|

74 6f 72 65 2f 62 64 36 35 39 33 32 31 39 66 38 |tore/bd6593219f8|

64 63 62 36 33 30 61 34 35 35 62 31 61 35 37 66 |dcb630a455b1a57f|

36 34 36 33 33 2d 67 74 6b 2b 2d 32 2e 32 2e 34 |64633-gtk+-2.2.4|

2f 6c 69 62 3a 2f 6e 69 78 2f 73 74 6f 72 65 2f |/lib:/nix/store/|

62 37 65 62 34 37 36 64 36 32 62 61 65 38 62 63 |b7eb476d62bae8bc|

...

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Nix

/nix/store

caef3a491505...-glibc-2.3.3

lib

bd6593219f8d...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

71540b396431...-firefox-1.0

bin

firefox

lib

firefox-bin

libc.so.6

I Components reside in the Nix store.

I Component names are cryptographic
hashes of all build inputs.

I Components statically reference each
other.

I This gains us:
I Isolation
I Side-by-side versioning
I Variability for free
I Dependency scanning

I Components never change after they
have been built.

I ⇒ Purely functional model.

Contents of firefox-bin

...

2e 36 00 6c 69 62 73 74 64 63 2b 2b 2e 73 6f 2e |.6.libstdc++.so.|

36 00 6c 69 62 67 63 63 5f 73 2e 73 6f 2e 31 00 |6.libgcc_s.so.1.|

6c 69 62 70 74 68 72 65 61 64 2e 73 6f 2e 30 00 |libpthread.so.0.|

6c 69 62 63 2e 73 6f 2e 36 00 5f 5f 63 78 61 5f |libc.so.6.__cxa_|

61 74 65 78 69 74 00 5f 65 64 61 74 61 00 5f 5f |atexit._edata.__|

62 73 73 5f 73 74 61 72 74 00 2f 6e 69 78 2f 73 |bss_start./nix/s|

74 6f 72 65 2f 62 64 36 35 39 33 32 31 39 66 38 |tore/bd6593219f8|

64 63 62 36 33 30 61 34 35 35 62 31 61 35 37 66 |dcb630a455b1a57f|

36 34 36 33 33 2d 67 74 6b 2b 2d 32 2e 32 2e 34 |64633-gtk+-2.2.4|

2f 6c 69 62 3a 2f 6e 69 78 2f 73 74 6f 72 65 2f |/lib:/nix/store/|

62 37 65 62 34 37 36 64 36 32 62 61 65 38 62 63 |b7eb476d62bae8bc|

...

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Nix

/nix/store

caef3a491505...-glibc-2.3.3

lib

bd6593219f8d...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

71540b396431...-firefox-1.0

bin

firefox

lib

firefox-bin

libc.so.6

I Components reside in the Nix store.

I Component names are cryptographic
hashes of all build inputs.

I Components statically reference each
other.

I This gains us:
I Isolation
I Side-by-side versioning
I Variability for free
I Dependency scanning

I Components never change after they
have been built.

I ⇒ Purely functional model.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Nix

/nix/store

caef3a491505...-glibc-2.3.3

lib

bd6593219f8d...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

71540b396431...-firefox-1.0

bin

firefox

lib

firefox-bin

libc.so.6

I Components reside in the Nix store.

I Component names are cryptographic
hashes of all build inputs.

I Components statically reference each
other.

I This gains us:
I Isolation
I Side-by-side versioning
I Variability for free
I Dependency scanning

I Components never change after they
have been built.

I ⇒ Purely functional model.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Transparent source/binary deployment

I Components are built from Nix expressions.

I To build a component, Nix computes hash, then checks if a
substitute is available.

{ StorePath: /nix/store/075931820cae...-firefox-1.0
URL: http://.../075931820cae...-firefox-1.0.nar.bz2
Size: 11480169 }

If so, the substitute is downloaded and unpacked.

I If not, the component is built normally.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Upgrading

I If we change a
fundamental component...

I ... we have to rebuild all
components depending on
it.

I Why not just do a
dynamic library override
(e.g.,
LD LIBRARY PATH)?

I Static linking
I Inlining, whole-program

optimisations
I Tool changes (e.g.,

compiler fixes)

gtk+-2.2.4.tar.bz2
605332199533...

gtk+-2.2.4
7a418919e290...

firefox-1.0
71540b396431...

glibc-2.3.3.tar.bz2
e825807b9804...

glibc-2.3.3
caef3a491505...

gcc-3.4.3
1cd733e8f392...

gcc-3.4.3.tar.bz2
e744b30c8343...

firefox-1.0.tar.bz2
49c16a71f4de...

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Upgrading

I If we change a
fundamental component...

I ... we have to rebuild all
components depending on
it.

I Why not just do a
dynamic library override
(e.g.,
LD LIBRARY PATH)?

I Static linking
I Inlining, whole-program

optimisations
I Tool changes (e.g.,

compiler fixes)

gtk+-2.4.13.tar.bz2
3a438e101070...

gtk+-2.4.13
300ccc1a41af...

firefox-1.0
fbf12e2b9ee8...

glibc-2.3.3.tar.bz2
e825807b9804...

glibc-2.3.3
caef3a491505...

gcc-3.4.3
1cd733e8f392...

gcc-3.4.3.tar.bz2
e744b30c8343...

firefox-1.0.tar.bz2
49c16a71f4de...

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Upgrading

I If we change a
fundamental component...

I ... we have to rebuild all
components depending on
it.

I Why not just do a
dynamic library override
(e.g.,
LD LIBRARY PATH)?

I Static linking
I Inlining, whole-program

optimisations
I Tool changes (e.g.,

compiler fixes)

gtk+-2.4.13.tar.bz2
3a438e101070...

gtk+-2.4.13
300ccc1a41af...

firefox-1.0
fbf12e2b9ee8...

glibc-2.3.3.tar.bz2
e825807b9804...

glibc-2.3.3
caef3a491505...

gcc-3.4.3
1cd733e8f392...

gcc-3.4.3.tar.bz2
e744b30c8343...

firefox-1.0.tar.bz2
49c16a71f4de...

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

The problem

I Purely functional model makes deploying fundamental
upgrades (e.g., to glibc, gcc, gtk) inefficient.

I Must rebuild everything; that’s developer/deployer-side, so it’s
okay. Only needs to be done once.

I Must redeploy everything, to every machine. Expensive/slow
in terms of network bandwidth.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Binary patch deployment

I Solution: deploy binary patches between store objects.

I Extend substitute downloader to download and apply patches:

patch {
StorePath: /nix/store/5bfd71c253db...-firefox-1.0
URL: http://.../52c036147222...-firefox-0.9-to-1.0
Size: 357
BasePath: /nix/store/075931820cae...-firefox-0.9

}

I I.e.,
I If we need /nix/store/5bfd71c253db...-firefox-1.0
I And we have /nix/store/075931820cae...-firefox-0.9,
I Then we can download

http://.../52c036147222...-firefox-0.9-to-1.0,
I Copy the base to the target,
I And apply the patch to the target.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Computing patches

I Naive approach: compute file-by-file deltas (e.g., using
bsdiff).

I How to deal with file renames, moves, deletions, etc.?

I Beter approach: compute delta between archive dumps of
store paths.

I The delta algorithm will deal with renames/moves/deletes
automatically:

A/B
c0 0f 85 2b fc

 ff ff 8b 45 d8
85 c0 0f f3 ..

C/D
c0 0f 85 2b fc

 ff ff 8b 45 d8
85 c0 0f f3 ..

copy

Base

Target

I Archives must be canonical.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Computing patches

I Naive approach: compute file-by-file deltas (e.g., using
bsdiff).

I How to deal with file renames, moves, deletions, etc.?

I Beter approach: compute delta between archive dumps of
store paths.

I The delta algorithm will deal with renames/moves/deletes
automatically:

A/B
c0 0f 85 2b fc

 ff ff 8b 45 d8
85 c0 0f f3 ..

C/D
c0 0f 85 2b fc

 ff ff 8b 45 d8
85 c0 0f f3 ..

copy

Base

Target

I Archives must be canonical.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Computing patches

I Naive approach: compute file-by-file deltas (e.g., using
bsdiff).

I How to deal with file renames, moves, deletions, etc.?

I Beter approach: compute delta between archive dumps of
store paths.

I The delta algorithm will deal with renames/moves/deletes
automatically:

A/B
c0 0f 85 2b fc

 ff ff 8b 45 d8
85 c0 0f f3 ..

C/D
c0 0f 85 2b fc

 ff ff 8b 45 d8
85 c0 0f f3 ..

copy

Base

Target

I Archives must be canonical.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Computing patches

I Naive approach: compute file-by-file deltas (e.g., using
bsdiff).

I How to deal with file renames, moves, deletions, etc.?

I Beter approach: compute delta between archive dumps of
store paths.

I The delta algorithm will deal with renames/moves/deletes
automatically:

A/B
c0 0f 85 2b fc

 ff ff 8b 45 d8
85 c0 0f f3 ..

C/D
c0 0f 85 2b fc

 ff ff 8b 45 d8
85 c0 0f f3 ..

copy

Base

Target

I Archives must be canonical.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Patch chaining

I Problem: if we have n releases,
we do not want to produce
Θ(n2) patches.

I Solution: patch chaining.

I Find sequence of patches that
transforms store object P to Q.

I Find shortest path in graph
consisting of patches, available
bases, and full downloads.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Patch chaining

I Problem: if we have n releases,
we do not want to produce
Θ(n2) patches.

I Solution: patch chaining.

I Find sequence of patches that
transforms store object P to Q.

I Find shortest path in graph
consisting of patches, available
bases, and full downloads.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Patch chaining

I Problem: if we have n releases,
we do not want to produce
Θ(n2) patches.

I Solution: patch chaining.

I Find sequence of patches that
transforms store object P to Q.

I Find shortest path in graph
consisting of patches, available
bases, and full downloads.

start

95af3e-firefox-1.0.3

11158372
(full DL)

693ff3-firefox-1.0.1

0
(present)

ae937d1-firefox-0.9

0
(present)

ee7b50-firefox-1.0.2

154179
(patch)

789234
(patch)

244869
(patch)

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Patch chaining

I Problem: if we have n releases,
we do not want to produce
Θ(n2) patches.

I Solution: patch chaining.

I Find sequence of patches that
transforms store object P to Q.

I Find shortest path in graph
consisting of patches, available
bases, and full downloads.

start

95af3e-firefox-1.0.3

11158372
(full DL)

693ff3-firefox-1.0.1

0
(present)

ae937d1-firefox-0.9

0
(present)

ee7b50-firefox-1.0.2

154179
(patch)

789234
(patch)

244869
(patch)

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Patch chaining (2)

I Chaining policies: between what
releases do we produce patches?

I Example: for Nixpkgs we
produce patches between

I Directly succeeding
pre-releases (several times per
day, for developers subscribing
to the unstable channel)

I All succeeding releases (for
developers subscribing to the
stable channel)

...

0.6pre1741

...

0.7pre1928

0.5

0.6

0.7

0.7pre1777

0.7pre1785

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Experience

I Applied to Nix Packages collection.

I Large set of Unix packages.
I Representative set of changes:

I To “leaf” components: Firefox, Subversion, ...
I To fundamental components glibc, gcc, (including ABI

changes), ...

Release
Comps.
changed

Full
size

Total
patch
size

Savings Remarks

0.7pre1931 1 1164K 45K 96.1% Subversion 1.1.1 → 1.1.2
0.6pre1069 27 31.6M 162K 99.5% X11 client libraries update
0.7pre1820 154 188.6M 598K 99.7% Glibc loadlocale bug fix
0.6pre1489 147 180M 71M 60.5% Glibc 2.3.2 → 2.3.3, GCC

3.3.3 → 3.4.2, etc.
0.7pre1980 154 197.2M 3748K 98.1% GCC 3.4.2 → 3.4.3

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Experience

I Applied to Nix Packages collection.

I Large set of Unix packages.
I Representative set of changes:

I To “leaf” components: Firefox, Subversion, ...
I To fundamental components glibc, gcc, (including ABI

changes), ...

Release
Comps.
changed

Full
size

Total
patch
size

Savings Remarks

0.7pre1931 1 1164K 45K 96.1% Subversion 1.1.1 → 1.1.2
0.6pre1069 27 31.6M 162K 99.5% X11 client libraries update
0.7pre1820 154 188.6M 598K 99.7% Glibc loadlocale bug fix
0.6pre1489 147 180M 71M 60.5% Glibc 2.3.2 → 2.3.3, GCC

3.3.3 → 3.4.2, etc.
0.7pre1980 154 197.2M 3748K 98.1% GCC 3.4.2 → 3.4.3

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Experience

I Applied to Nix Packages collection.

I Large set of Unix packages.
I Representative set of changes:

I To “leaf” components: Firefox, Subversion, ...
I To fundamental components glibc, gcc, (including ABI

changes), ...

Release
Comps.
changed

Full
size

Total
patch
size

Savings Remarks

0.7pre1931 1 1164K 45K 96.1% Subversion 1.1.1 → 1.1.2
0.6pre1069 27 31.6M 162K 99.5% X11 client libraries update
0.7pre1820 154 188.6M 598K 99.7% Glibc loadlocale bug fix
0.6pre1489 147 180M 71M 60.5% Glibc 2.3.2 → 2.3.3, GCC

3.3.3 → 3.4.2, etc.
0.7pre1980 154 197.2M 3748K 98.1% GCC 3.4.2 → 3.4.3

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Experience

I Applied to Nix Packages collection.

I Large set of Unix packages.
I Representative set of changes:

I To “leaf” components: Firefox, Subversion, ...
I To fundamental components glibc, gcc, (including ABI

changes), ...

Release
Comps.
changed

Full
size

Total
patch
size

Savings Remarks

0.7pre1931 1 1164K 45K 96.1% Subversion 1.1.1 → 1.1.2
0.6pre1069 27 31.6M 162K 99.5% X11 client libraries update
0.7pre1820 154 188.6M 598K 99.7% Glibc loadlocale bug fix
0.6pre1489 147 180M 71M 60.5% Glibc 2.3.2 → 2.3.3, GCC

3.3.3 → 3.4.2, etc.
0.7pre1980 154 197.2M 3748K 98.1% GCC 3.4.2 → 3.4.3

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Experience

I Applied to Nix Packages collection.

I Large set of Unix packages.
I Representative set of changes:

I To “leaf” components: Firefox, Subversion, ...
I To fundamental components glibc, gcc, (including ABI

changes), ...

Release
Comps.
changed

Full
size

Total
patch
size

Savings Remarks

0.7pre1931 1 1164K 45K 96.1% Subversion 1.1.1 → 1.1.2
0.6pre1069 27 31.6M 162K 99.5% X11 client libraries update
0.7pre1820 154 188.6M 598K 99.7% Glibc loadlocale bug fix
0.6pre1489 147 180M 71M 60.5% Glibc 2.3.2 → 2.3.3, GCC

3.3.3 → 3.4.2, etc.
0.7pre1980 154 197.2M 3748K 98.1% GCC 3.4.2 → 3.4.3

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Related work

I Binary diff algorithms: bsdiff (Percival), zdelta (Trendafilov
et al.), vdelta (Korn et al.)

I Binary patch deployment is quite common
I But no patch chaining
I Only nominal matching

I Delta RPMs (SuSE)
I But cpio has no canonical form

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

Conclusions

I Contributions:
I A purely functional deployment model is not incompatible with

efficient upgrading.
I A generic method for computing patches in the presence of

arbitrary renames, moves, etc.
I Patching can be made transparent between any set of

components.
I Heuristics to select patch bases efficiently.

I Nix is available at
http://www.cs.uu.nl/groups/ST/Trace/Nix.

Eelco Dolstra eelco@cs.uu.nl Efficient Upgrading

http://www.cs.uu.nl/groups/ST/Trace/Nix

	Motivation
	Nix
	Transparent source/binary deployment
	Upgrading
	The problem

	Binary patch deployment
	Computing patches
	Patch chaining
	Patch chaining (2)

	Experience
	Related work
	Conclusions

