
Imposing a Memory Management Discipline on
Software Deployment

Eelco Dolstra Eelco Visser Merijn de Jonge

Institute of Information & Computing Sciences
Utrecht University, The Netherlands

May 28, 2004

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Outline

1 Why Does Software Deployment Fail?

2 Deriving a Solution

3 Practical Aspects

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Outline

1 Why Does Software Deployment Fail?
Unresolved Component Dependencies
Component Interference
This Is a Big Problem

2 Deriving a Solution

3 Practical Aspects

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Why Does Software Deployment Fail?

Software deployment (the act of transferring software to another
system) is surprisingly hard.

It’s hard to ensure correctness (the software should work the
same on the source and target systems).

It’s too much work.

Deployment systems tend to be inflexible.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Unresolved Component Dependencies

Producer Site

Application

App

Libraries
LibA

version 0.5

LibB
version 1.3

When we deploy a
component. . .

. . . we have to
ensure that all its
dependencies are
present on the
target system

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Unresolved Component Dependencies

Producer Site

Application

App

Libraries
LibA

version 0.5

LibB
version 1.3

Consumer Site

Application

App

Libraries
LibA

version 0.3 ?!

When we deploy a
component. . .

. . . we have to
ensure that all its
dependencies are
present on the
target system

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Component Interference

Applications

App1 App2 App3

Libraries

Lib1 Lib2

Applications

App1 App2 App3

Libraries

LibA LibB

Operations on a
component (install,
upgrade, remove) often
break other components
(interference). E.g.:

Upgrade of App2
breaks App1 due to
upgrade of LibB to
LibB’

Removal of App3
breaks App1 due to
removal of LibA

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Component Interference

Applications

App1 App2 App3

Libraries

Lib1 Lib2

Applications

App1 App2 App3

Libraries

Applications

App1 App2' App3

Libraries

Upgrade of App2

LibA LibB

LibA LibB'

Operations on a
component (install,
upgrade, remove) often
break other components
(interference). E.g.:

Upgrade of App2
breaks App1 due to
upgrade of LibB to
LibB’

Removal of App3
breaks App1 due to
removal of LibA

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Component Interference

Applications

App1 App2 App3

Libraries

Lib1 Lib2

Applications

App1 App2 App3

Libraries

Applications

App1 App2' App3

Libraries

Upgrade of App2

Applications

App1 App2 App3

Libraries

Lib1 Lib2

Applications

App1 App2

Libraries

Removal of App3

?!

LibA LibB

LibA LibB' LibB

Operations on a
component (install,
upgrade, remove) often
break other components
(interference). E.g.:

Upgrade of App2
breaks App1 due to
upgrade of LibB to
LibB’

Removal of App3
breaks App1 due to
removal of LibA

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

This Is a Big Problem

freetype-2.1.5

firefox-0.8

gtk+-2.4.0

fontconfig-2.2.2

pango-1.4.0

libXft-2.1.6

xlib-1.0

libXt-0.1.4-cvs

glibc-2.3.2

libX11-6.2.1

libIDL-0.8.2

glib-2.4.0

libXrender-0.8.4

atk-1.6.0

libSM-6.0.2

libXau-0.1.1

libICE-6.3.2 glib-2.2.3

perl-5.8.3

gnused-4.0.7 binutils-2.14coreutils-5.0

libtiff-3.5.7libpng-1.2.5

libjpeg-6b

libXext-6.4.2

zlib-1.2.1

expat-1.95.7

xproto-6.6.1

linux-headers-2.4.25-i386

libXtrans-0.1 xextensions-1.0.1

renderext-0.8

Note: these are runtime dependencies;
there are still more build time dependencies.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Outline

1 Why Does Software Deployment Fail?

2 Deriving a Solution
Deployment as Memory Management
Deployment Requires Closures
Pointer Discipline in PLs
Imposing a Pointer Discipline on the FS
Risks
Preventing Interference

3 Practical Aspects

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment as Memory Management

memory ⇔ disk
objects (values) ⇔ components

addresses ⇔ path names
pointer dereference ⇔ I/O
pointer arithmetic ⇔ string operations

dangling pointer ⇔ reference to absent component

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment as Memory Management

memory ⇔ disk
objects (values) ⇔ components

addresses ⇔ path names
pointer dereference ⇔ I/O
pointer arithmetic ⇔ string operations

dangling pointer ⇔ reference to absent component

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment as Memory Management

memory ⇔ disk
objects (values) ⇔ components

addresses ⇔ path names
pointer dereference ⇔ I/O
pointer arithmetic ⇔ string operations

dangling pointer ⇔ reference to absent component

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment as Memory Management

memory ⇔ disk
objects (values) ⇔ components

addresses ⇔ path names
pointer dereference ⇔ I/O
pointer arithmetic ⇔ string operations

dangling pointer ⇔ reference to absent component

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment as Memory Management

memory ⇔ disk
objects (values) ⇔ components

addresses ⇔ path names
pointer dereference ⇔ I/O
pointer arithmetic ⇔ string operations

dangling pointer ⇔ reference to absent component

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment Requires Closures

Correct deployment of component c requires distributing the
smallest set of components C containing c closed under the
“has-a-pointer-to” relation.

A

B

C

F
E

D

So we have to discover the pointer graph.

This is exactly what garbage collectors
for programming languages have to do.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment Requires Closures

Correct deployment of component c requires distributing the
smallest set of components C containing c closed under the
“has-a-pointer-to” relation.

A

B

C

F
E

D

So we have to discover the pointer graph.

This is exactly what garbage collectors
for programming languages have to do.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment Requires Closures

Correct deployment of component c requires distributing the
smallest set of components C containing c closed under the
“has-a-pointer-to” relation.

A

B

C

F
E

D

So we have to discover the pointer graph.

This is exactly what garbage collectors
for programming languages have to do.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Deployment Requires Closures

Correct deployment of component c requires distributing the
smallest set of components C containing c closed under the
“has-a-pointer-to” relation.

A

B

C

F
E

D

So we have to discover the pointer graph.

This is exactly what garbage collectors
for programming languages have to do.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Pointer Discipline in PLs

GC requires a pointer discipline:

Ideally, entire memory layout is known, and no arbitrary
pointer formation (e.g., integer ⇔ pointer casts).
But even C/C++ has rules: pointer arithmetic is not allowed
to move a pointer out of the object it points to.
This is why conservative GC works: assume that everything
that looks like a pointer is a pointer.

But software components do not have any pointer discipline.

Any string can be a pointer.
Pointer arithmetic and dereferencing directories can produce
pointers to any object in the file system.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Imposing a Pointer Discipline on the FS

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

lib

libsvn_wc.so

libsvn_ra_dav.so

a17fb5a6c48f-openssl-0.9.7c

lib

libssl.so.0.9.7

8d013ea878d0-glibc-2.3.2

lib

libc.so.6

Each component
should include in its
a path a unique
identifying string.

Then we can apply
conservative GC
techniques to find
pointers. . .

. . . which gives us
the pointer graph!

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Imposing a Pointer Discipline on the FS

/nix/store/eeeeaf...-subversion/bin/svn:
200000002000000004000000
0400000050e57464e0420100P.td.B..
e0c20508e0c2050814000000
140000000400000004000000
2f6e69782f73746f72652f38 /nix/store/8
643031336561383738643038 d013ea878d08
663233346164353462303131 f234ad54b011
313832313564662d676c6962 18215df-glib
632d322e332e322f6c69622f c-2.3.2/lib/
6c642d6c696e75782e736f2e ld-linux.so.
320000000400000010000000 2...........
01000000474e550000000000GNU.....
020000000000000000000000
83000000bb00000058000000X...
ab000000ae000000a1000000
000000006c00000000000000l.......

Each component
should include in its
a path a unique
identifying string.

Then we can apply
conservative GC
techniques to find
pointers. . .

. . . which gives us
the pointer graph!

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Imposing a Pointer Discipline on the FS

/nix/store/eeeeaf...-subversion/bin/svn:
200000002000000004000000
0400000050e57464e0420100P.td.B..
e0c20508e0c2050814000000
140000000400000004000000
2f6e69782f73746f72652f38 /nix/store/8
643031336561383738643038 d013ea878d08
663233346164353462303131 f234ad54b011
313832313564662d676c6962 18215df-glib
632d322e332e322f6c69622f c-2.3.2/lib/
6c642d6c696e75782e736f2e ld-linux.so.
320000000400000010000000 2...........
01000000474e550000000000GNU.....
020000000000000000000000
83000000bb00000058000000X...
ab000000ae000000a1000000
000000006c00000000000000l.......

Each component
should include in its
a path a unique
identifying string.

Then we can apply
conservative GC
techniques to find
pointers. . .

. . . which gives us
the pointer graph!

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Imposing a Pointer Discipline on the FS

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

lib

libsvn_wc.so

libsvn_ra_dav.so

a17fb5a6c48f-openssl-0.9.7c

lib

libssl.so.0.9.7

8d013ea878d0-glibc-2.3.2

lib

libc.so.6

Each component
should include in its
a path a unique
identifying string.

Then we can apply
conservative GC
techniques to find
pointers. . .

. . . which gives us
the pointer graph!

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Imposing a Pointer Discipline on the FS

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

lib

libsvn_wc.so

libsvn_ra_dav.so

a17fb5a6c48f-openssl-0.9.7c

lib

libssl.so.0.9.7

8d013ea878d0-glibc-2.3.2

lib

libc.so.6

Each component
should include in its
a path a unique
identifying string.

Then we can apply
conservative GC
techniques to find
pointers. . .

. . . which gives us
the pointer graph!

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Risks

As in all conservative GC approaches, there is a risk of
pointer hiding.

Compressed executables.
UTF-16 encoded paths.

However, we haven’t observed this yet, despite Nixifying some
170 Unix packages.

I.e., this is a heuristic, but a reliable one.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Preventing Interference

The unique strings are cryptographic MD5 hashes of all inputs
involved in building the component.

This prevents address collisions in the target address space
(i.e., path name collisions in the target file system).

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Outline

1 Why Does Software Deployment Fail?

2 Deriving a Solution

3 Practical Aspects
End Users
Developers

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

End Users

“I don’t want to type /nix/-
store/very-long-path/bin/svn
all the time!”

Solution: synthesise a user
environment of currently
activated applications.

These are components
themselves, so multiple
environments can co-exist.

On Unix we can atomically
switch between them.

These are roots of the
garbage collector.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

End Users

“I don’t want to type /nix/-
store/very-long-path/bin/svn
all the time!”

Solution: synthesise a user
environment of currently
activated applications.

These are components
themselves, so multiple
environments can co-exist.

On Unix we can atomically
switch between them.

These are roots of the
garbage collector.

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

/nix/links

current

42

068150f63831-user-env

bin

svn

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

End Users

“I don’t want to type /nix/-
store/very-long-path/bin/svn
all the time!”

Solution: synthesise a user
environment of currently
activated applications.

These are components
themselves, so multiple
environments can co-exist.

On Unix we can atomically
switch between them.

These are roots of the
garbage collector.

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

/nix/links

current

42

27140513a0f9-mozilla-1.4

bin

mozilla

068150f63831-user-env

bin

svn

58823d558a6a-subversion-0.34

bin

svn

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

End Users

“I don’t want to type /nix/-
store/very-long-path/bin/svn
all the time!”

Solution: synthesise a user
environment of currently
activated applications.

These are components
themselves, so multiple
environments can co-exist.

On Unix we can atomically
switch between them.

These are roots of the
garbage collector.

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

/nix/links

current

42

43

27140513a0f9-mozilla-1.4

bin

mozilla

068150f63831-user-env

bin

svn

84c85f89ddbf-user-env

bin

svn

mozilla

58823d558a6a-subversion-0.34

bin

svn

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

End Users

“I don’t want to type /nix/-
store/very-long-path/bin/svn
all the time!”

Solution: synthesise a user
environment of currently
activated applications.

These are components
themselves, so multiple
environments can co-exist.

On Unix we can atomically
switch between them.

These are roots of the
garbage collector.

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

/nix/links

current

42

43

27140513a0f9-mozilla-1.4

bin

mozilla

068150f63831-user-env

bin

svn

84c85f89ddbf-user-env

bin

svn

mozilla

58823d558a6a-subversion-0.34

bin

svn

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

End Users

“I don’t want to type /nix/-
store/very-long-path/bin/svn
all the time!”

Solution: synthesise a user
environment of currently
activated applications.

These are components
themselves, so multiple
environments can co-exist.

On Unix we can atomically
switch between them.

These are roots of the
garbage collector.

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

/nix/links

current

43

27140513a0f9-mozilla-1.4

bin

mozilla

068150f63831-user-env

bin

svn

84c85f89ddbf-user-env

bin

svn

mozilla

58823d558a6a-subversion-0.34

bin

svn

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

End Users

“I don’t want to type /nix/-
store/very-long-path/bin/svn
all the time!”

Solution: synthesise a user
environment of currently
activated applications.

These are components
themselves, so multiple
environments can co-exist.

On Unix we can atomically
switch between them.

These are roots of the
garbage collector.

/nix/store/nix/links

current

43

27140513a0f9-mozilla-1.4

bin

mozilla

84c85f89ddbf-user-env

bin

svn

mozilla

58823d558a6a-subversion-0.34

bin

svn

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Developers

“I don’t want to write
/nix/store/very-long-
path/. . . in my
Makefiles all the time!”

Solution: build actions
are generated from
high-level Nix
expressions.

Nix takes care of
computing hashes and
passes them to build
scripts.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Developers

“I don’t want to write
/nix/store/very-long-
path/. . . in my
Makefiles all the time!”

Solution: build actions
are generated from
high-level Nix
expressions.

Nix takes care of
computing hashes and
passes them to build
scripts.

Nix expression for Subversion

{ localServer, stdenv, fetchurl
, openssl ? null, db4 ? null, ... }:

assert localServer -> db4 != null;

stdenv.mkDerivation {
name = "subversion-1.0.3";
builder = ./builder.sh;
src = fetchurl {url=...};
db4 = if localServer

then db4 else null;
...

}

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Developers

“I don’t want to write
/nix/store/very-long-
path/. . . in my
Makefiles all the time!”

Solution: build actions
are generated from
high-level Nix
expressions.

Nix takes care of
computing hashes and
passes them to build
scripts.

Build script for Subversion

tar xvfj $src
cd subversion-*
if test "$localServer"; then
extraFlags=\
--with-berkeley-db=$db4

fi
./configure --prefix=$out \
$extraFlags

make
make install

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Related Work

Deployment / package managers: RPM, Gentoo, etc.

Unsafe — incomplete deployment, not atomic.

Better build managers: Vesta, ClearCase.

Do not do deployment.
Cannot handle retained dependencies.
Not portable; rely on virtual file system.

.NET / Java WebStart

Covers only executable resources.
“Unmanaged” file system.
Bound to a specific component technology.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Related Work

Deployment / package managers: RPM, Gentoo, etc.

Unsafe — incomplete deployment, not atomic.

Better build managers: Vesta, ClearCase.

Do not do deployment.
Cannot handle retained dependencies.
Not portable; rely on virtual file system.

.NET / Java WebStart

Covers only executable resources.
“Unmanaged” file system.
Bound to a specific component technology.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Related Work

Deployment / package managers: RPM, Gentoo, etc.

Unsafe — incomplete deployment, not atomic.

Better build managers: Vesta, ClearCase.

Do not do deployment.
Cannot handle retained dependencies.
Not portable; rely on virtual file system.

.NET / Java WebStart

Covers only executable resources.
“Unmanaged” file system.
Bound to a specific component technology.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

Conclusion

Paradigm: solving deployment problems by applying PL
techniques.

Safe deployment requires identification and deployment of
closures.

Closures can be identified using unique hashes.

These also ensure non-interference between versions/variants.

Multiple user environments.

Safe garbage collection.

More information:
http://www.cs.uu.nl/groups/ST/Trace/Nix.

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

http://www.cs.uu.nl/groups/ST/Trace/Nix

FAQ

“How to handle security patches (e.g., in the C library)? There you
do want destructive updates.”

No you don’t. How to roll-back if the patch breaks things?

Just deploy the new components; to the extent that there is
sharing with old ones, no rebuilds / redownloads are necessary.

In the case of dynamic libraries, wrapper packages can be
used to prevent a mass rebuild.

glibc

glibc'

App

AppWrapper

Eelco Dolstra, Eelco Visser, Merijn de Jonge A Memory Management Discipline for Software Deployment

	Outline
	Why Does Software Deployment Fail?
	Unresolved Component Dependencies
	Component Interference
	This Is a Big Problem

	Deriving a Solution
	Deployment as Memory Management
	Deployment Requires Closures
	Pointer Discipline in PLs
	Imposing a Pointer Discipline on the FS
	Risks
	Preventing Interference

	Practical Aspects
	End Users
	Developers

	Conclusion
	Related Work
	Conclusion

	Appendix
	FAQ

