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Motivation: Regression testing

Automated regression testing (“make check”) is a good thing
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Environmental dependencies
All artifacts that a test requires from its environment

Examples:
Root privileges
System services
Multiple machines
(for distributed systems)
Specific network
topologies
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Example: Quake 3

Quake 3: multiplayer first-person shooter
Test needs multiple machines:

I Client(s)
I Server

Test needs X11 server on the clients



Example: Transmission test

Transmission is a Bittorrent client

Needs multiple machines:
multiple clients + a tracker
Needs special topology for testing
NAT traversal feature:
peers should be able to connect
to peers behind NAT devices
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I Slow, expensive

So the VMs should be instantiated automatically from a
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NixOS

NixOS: a Linux distribution with a
declarative configuration model

Machines configured using a
declarative specification

{ networking.hostName = "hagbard";

environment.systemPackages = [ pkgs.firefox ];

services.xserver.enable = true;

services.httpd.enable = true;

services.httpd.documentRoot = "/webdata";

...

}

Usually used to install a machine,
but here we’ll use it to instantiate VMs
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Quake 3 testing: network specification

nodes =

{ client =

{ services.xserver.enable = true;

environment.systemPackages = [ pkgs.quake3 ];

};

server =

{ jobs.quake3Server =

{ startOn = "startup";

exec =

"${pkgs.quake3}/bin/quake3"

+ " +set dedicated 1 +set g_gametype 0"

+ " +map q3dm7 +addbot grunt 2> /tmp/log";

};
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Quake 3 testing: test script

testScript =

’’

startAll;

$server→waitForJob("quake3-server");

$client→waitForX;

$client→succeed(

"quake3 +set name Foo +connect server &");

$server→waitUntilSucceeds("grep ’Foo.*entered the game’ /tmp/log");

sleep 20;

$client→screenshot("screen.png");

’’;
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Network topologies: Transmission test

tracker =

{ environment.systemPackages = [ pkgs.transmission pkgs.bittorrent ];

services.httpd.enable = true;

services.httpd.documentRoot = "/tmp";

};

router =

{ environment.systemPackages = [ iptables miniupnpd ];

virtualisation.vlans = [ 1 2 ];

};

client1 =

{ environment.systemPackages = [ transmission ];

virtualisation.vlans = [ 2 ];

networking.defaultGateway = nodes.router

.config.networking.ifaces.eth2.ipAddress;

};

client2 =

{ environment.systemPackages = [ transmission ];

};
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Implementation
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quake3 = stdenv.mkDerivation {

name = "quake3";

src = ./quake3-srcs;

buildInputs = [ libX11 sdl mesa ];

buildCommand =

’’

./configure --prefix=$out

make

make install

’’;

};

libX11 = stdenv.mkDerivation {

name = "libX11-1.3.4";

...

};

sdl = ...;

mesa = ...;
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Building NixOS VMs

NixOS = big
dependency graph:
packages, kernel, boot
scripts, system services,
static config files...

NixOS VM: one extra
step to build a script
that runs QEMU/KVM

xorg.conf

xserver

ssh_config

etc

profile.sh

sshd_config

sshd

ntp.conf

ntpdhardwareScan

upstartJobs

dhclientdhcpdudev mingettystage1Init

initrd

stage2Init

system

activateConfiguration

modulesTree

modulesClosure

systemPath

kernel

nvidiaDriveriwlwifi

klibce2fsprogs

modprobe ntp dhcpopenssh

xauth

libX11

xorgserver

bashiputils pwdutils perl

upstart

grubMenuBuilder

${pkgs.qemu_kvm}/bin/qemu-system-x86_64 -smb /

-kernel ${config.boot.kernelPackages.kernel}

-initrd ${config.system.build.initialRamdisk}

-append "init=..."
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Efficient VM instantiation

We don’t generate disk images

Rather, the VM mounts the Nix store of the host (using SMB/CIFS)
Thanks to the purely functional nature of the Nix store:
VMs don’t interfere with each other

I Not possible if we were using (say)
/bin and /etc of an Ubuntu system
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Experience

NixOS continuous builds

GNU Project integration testing
I E.g. GNU C Library (Glibc)

Other free software projects



Conclusion

Contributions
Concise specifications of machines and networks needed for
system tests

I Thanks to the declarative model of NixOS
Efficient method to instantiate those specifications

I Thanks to the purely functional nature of Nix

Bottom line: makes it easy to write automated tests that would
otherwise be infeasible

More information
Web: http://nixos.org/
E-mail: e.dolstra@tudelft.nl, s.vanderburg@tudelft.nl1

http://nixos.org/


Bonus slides



Distributed code coverage

Example of the advantage of a functional build specification
language
Can easily adapt the dependency graph to apply coverage
instrumentation
Gather coverage data from all VMs and combine it into one report
Useful because different code paths may be exercised on the
client and the server



Why NixOS?

Why not just generate (say) Ubuntu 10.10 disk images?
We have a function for that, but...

It’s slow and expensive to generate full disk images.
Not declarative; inconvient for specifying tests.

Note: host system can be any Linux distribution.



Interactive testing

We can also run the VMs from the declarative model interactively.



Evaluation

Test # VMs Duration (s) Memory (MiB)
empty 1 45.9 166
openssh 1 53.7 267
kde4 1 140.4 433
subversion 2 104.8 329
trac 4 159.4 756
proxy 4 65.4 477
quake3 3 80.6 528
transmission 4 89.5 457
installation 2 302.7 751
nfs 3 259.7 358

Table: Test resource consumption
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