
Automating System Tests Using
Declarative Virtual Machines

Sander van der Burg Eelco Dolstra

Department of Software Technology,
Delft University of Technology, Netherlands

21st IEEE International Symposium on
Software Reliability Engineering

November 1–4, San Jose, CA, USA

Motivation: Regression testing

Automated regression testing (“make check”) is a good thing

Motivation: testing at the system level

The problem
Some tests are easy to automate

I Unit tests
I Compiler test suites

But others are hard, especially at the
integration or system level

I E.g. distributed systems or OS-level software

So developers don’t bother to write regression tests

I Example: Linux kernel doesn’t have a “make check”

Goal of this paper
Make system tests as easy to write as unit tests

Motivation: testing at the system level

The problem
Some tests are easy to automate

I Unit tests
I Compiler test suites

But others are hard, especially at the
integration or system level

I E.g. distributed systems or OS-level software
So developers don’t bother to write regression tests

I Example: Linux kernel doesn’t have a “make check”

Goal of this paper
Make system tests as easy to write as unit tests

Motivation: testing at the system level

The problem
Some tests are easy to automate

I Unit tests
I Compiler test suites

But others are hard, especially at the
integration or system level

I E.g. distributed systems or OS-level software

So developers don’t bother to write regression tests

I Example: Linux kernel doesn’t have a “make check”

Goal of this paper
Make system tests as easy to write as unit tests

Motivation: testing at the system level

The problem
Some tests are easy to automate

I Unit tests
I Compiler test suites

But others are hard, especially at the
integration or system level

I E.g. distributed systems or OS-level software
So developers don’t bother to write regression tests

I Example: Linux kernel doesn’t have a “make check”

Goal of this paper
Make system tests as easy to write as unit tests

Motivation: testing at the system level

The problem
Some tests are easy to automate

I Unit tests
I Compiler test suites

But others are hard, especially at the
integration or system level

I E.g. distributed systems or OS-level software
So developers don’t bother to write regression tests

I Example: Linux kernel doesn’t have a “make check”

Goal of this paper
Make system tests as easy to write as unit tests

Motivation: testing at the system level

The problem
Some tests are easy to automate

I Unit tests
I Compiler test suites

But others are hard, especially at the
integration or system level

I E.g. distributed systems or OS-level software
So developers don’t bother to write regression tests

I Example: Linux kernel doesn’t have a “make check”

Goal of this paper
Make system tests as easy to write as unit tests

Why are system tests hard to automate?

Environmental dependencies
All artifacts that a test requires from its environment

Examples:
Root privileges
System services
Multiple machines
(for distributed systems)
Specific network
topologies

Why are system tests hard to automate?

Environmental dependencies
All artifacts that a test requires from its environment

Examples:
Root privileges

System services
Multiple machines
(for distributed systems)
Specific network
topologies

Why are system tests hard to automate?

Environmental dependencies
All artifacts that a test requires from its environment

Examples:
Root privileges
System services

Multiple machines
(for distributed systems)
Specific network
topologies

Why are system tests hard to automate?

Environmental dependencies
All artifacts that a test requires from its environment

Examples:
Root privileges
System services
Multiple machines
(for distributed systems)

Specific network
topologies

Why are system tests hard to automate?

Environmental dependencies
All artifacts that a test requires from its environment

Examples:
Root privileges
System services
Multiple machines
(for distributed systems)
Specific network
topologies

Example: Quake 3

Quake 3: multiplayer first-person shooter
Test needs multiple machines:

I Client(s)
I Server

Test needs X11 server on the clients

Example: Transmission test

Transmission is a Bittorrent client

Needs multiple machines:
multiple clients + a tracker
Needs special topology for testing
NAT traversal feature:
peers should be able to connect
to peers behind NAT devices

Client

behind router

NAT/UPnP

router

Client

outside router

Tracker / Seeder

Example: Transmission test

Transmission is a Bittorrent client
Needs multiple machines:
multiple clients + a tracker

Needs special topology for testing
NAT traversal feature:
peers should be able to connect
to peers behind NAT devices

Client

behind router

NAT/UPnP

router

Client

outside router

Tracker / Seeder

Example: Transmission test

Transmission is a Bittorrent client
Needs multiple machines:
multiple clients + a tracker
Needs special topology for testing
NAT traversal feature:
peers should be able to connect
to peers behind NAT devices

Client

behind router

NAT/UPnP

router

Client

outside router

Tracker / Seeder

Goal

Implement the environment needed for a test by
instantiating (Linux) virtual machines

We don’t want to build VMs manually!
I Slow, expensive

So the VMs should be instantiated automatically from a
specification

Goal

Implement the environment needed for a test by
instantiating (Linux) virtual machines
We don’t want to build VMs manually!

I Slow, expensive

So the VMs should be instantiated automatically from a
specification

Goal

Implement the environment needed for a test by
instantiating (Linux) virtual machines
We don’t want to build VMs manually!

I Slow, expensive

So the VMs should be instantiated automatically from a
specification

Automated system test
=

declarative network specification
+

imperative test script

What do we need?
A concise way to specify VM configurations

⇒ Using NixOS

An efficient way to build VMs

⇒ Using Nix

Automated system test
=

declarative network specification
+

imperative test script

What do we need?
A concise way to specify VM configurations

⇒ Using NixOS

An efficient way to build VMs

⇒ Using Nix

Automated system test
=

declarative network specification
+

imperative test script

What do we need?
A concise way to specify VM configurations

⇒ Using NixOS

An efficient way to build VMs

⇒ Using Nix

Automated system test
=

declarative network specification
+

imperative test script

What do we need?
A concise way to specify VM configurations

⇒ Using NixOS

An efficient way to build VMs

⇒ Using Nix

Automated system test
=

declarative network specification
+

imperative test script

What do we need?
A concise way to specify VM configurations
⇒ Using NixOS
An efficient way to build VMs

⇒ Using Nix

Automated system test
=

declarative network specification
+

imperative test script

What do we need?
A concise way to specify VM configurations
⇒ Using NixOS
An efficient way to build VMs
⇒ Using Nix

NixOS

NixOS: a Linux distribution with a
declarative configuration model

Machines configured using a
declarative specification

{ networking.hostName = "hagbard";

environment.systemPackages = [pkgs.firefox];

services.xserver.enable = true;

services.httpd.enable = true;

services.httpd.documentRoot = "/webdata";

...

}

Usually used to install a machine,
but here we’ll use it to instantiate VMs

NixOS

NixOS: a Linux distribution with a
declarative configuration model
Machines configured using a
declarative specification

{ networking.hostName = "hagbard";

environment.systemPackages = [pkgs.firefox];

services.xserver.enable = true;

services.httpd.enable = true;

services.httpd.documentRoot = "/webdata";

...

}

Usually used to install a machine,
but here we’ll use it to instantiate VMs

NixOS

NixOS: a Linux distribution with a
declarative configuration model
Machines configured using a
declarative specification

{ networking.hostName = "hagbard";

environment.systemPackages = [pkgs.firefox];

services.xserver.enable = true;

services.httpd.enable = true;

services.httpd.documentRoot = "/webdata";

...

}

Usually used to install a machine,
but here we’ll use it to instantiate VMs

Quake 3 testing: network specification

nodes =

{ client =

{ services.xserver.enable = true;

environment.systemPackages = [pkgs.quake3];

};

server =

{ jobs.quake3Server =

{ startOn = "startup";

exec =

"${pkgs.quake3}/bin/quake3"

+ " +set dedicated 1 +set g_gametype 0"

+ " +map q3dm7 +addbot grunt 2> /tmp/log";

};

};

};

Quake 3 testing: network specification

nodes =

{ client =

{ services.xserver.enable = true;

environment.systemPackages = [pkgs.quake3];

};

server =

{ jobs.quake3Server =

{ startOn = "startup";

exec =

"${pkgs.quake3}/bin/quake3"

+ " +set dedicated 1 +set g_gametype 0"

+ " +map q3dm7 +addbot grunt 2> /tmp/log";

};

};

};

Quake 3 testing: network specification

nodes =

{ client =

{ services.xserver.enable = true;

environment.systemPackages = [pkgs.quake3];

};

server =

{ jobs.quake3Server =

{ startOn = "startup";

exec =

"${pkgs.quake3}/bin/quake3"

+ " +set dedicated 1 +set g_gametype 0"

+ " +map q3dm7 +addbot grunt 2> /tmp/log";

};

};

};

Quake 3 testing: test script

testScript =

’’

startAll;

$server→waitForJob("quake3-server");

$client→waitForX;

$client→succeed(

"quake3 +set name Foo +connect server &");

$server→waitUntilSucceeds("grep ’Foo.*entered the game’ /tmp/log");

sleep 20;

$client→screenshot("screen.png");

’’;

Running the test

Running the test

Running the test

Running the test

Running the test

Network topologies: Transmission test

tracker =

{ environment.systemPackages = [pkgs.transmission pkgs.bittorrent];

services.httpd.enable = true;

services.httpd.documentRoot = "/tmp";

};

router =

{ environment.systemPackages = [iptables miniupnpd];

virtualisation.vlans = [1 2];

};

client1 =

{ environment.systemPackages = [transmission];

virtualisation.vlans = [2];

networking.defaultGateway = nodes.router

.config.networking.ifaces.eth2.ipAddress;

};

client2 =

{ environment.systemPackages = [transmission];

};

Network topologies: Transmission test

tracker =

{ environment.systemPackages = [pkgs.transmission pkgs.bittorrent];

services.httpd.enable = true;

services.httpd.documentRoot = "/tmp";

};

router =

{ environment.systemPackages = [iptables miniupnpd];

virtualisation.vlans = [1 2];

};

client1 =

{ environment.systemPackages = [transmission];

virtualisation.vlans = [2];

networking.defaultGateway = nodes.router

.config.networking.ifaces.eth2.ipAddress;

};

client2 =

{ environment.systemPackages = [transmission];

};

Implementation

Nix

NixOS is based on Nix

Nix is a purely functional
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Nix

NixOS is based on Nix
Nix is a purely functional
package manager

Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make

Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile

Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

quake3 = stdenv.mkDerivation {

name = "quake3";

src = ./quake3-srcs;

buildInputs = [libX11 sdl mesa];

buildCommand =

’’

./configure --prefix=$out

make

make install

’’;

};

libX11 = stdenv.mkDerivation {

name = "libX11-1.3.4";

...

};

sdl = ...;

mesa = ...;

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)

Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix store:
/nix/store

n89h90y8k0r2...-gcc-4.4.3

bin
gcc

g++

9pq9d484l2dg...-glibc-2.11.1

lib

libc-2.11.1.so

ld-linux-x86-64.so.2

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable

I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix store:
/nix/store

n89h90y8k0r2...-gcc-4.4.3

bin
gcc

g++

9pq9d484l2dg...-glibc-2.11.1

lib

libc-2.11.1.so

ld-linux-x86-64.so.2

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix store:
/nix/store

n89h90y8k0r2...-gcc-4.4.3

bin
gcc

g++

9pq9d484l2dg...-glibc-2.11.1

lib

libc-2.11.1.so

ld-linux-x86-64.so.2

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix store:
/nix/store

n89h90y8k0r2...-gcc-4.4.3

bin
gcc

g++

9pq9d484l2dg...-glibc-2.11.1

lib

libc-2.11.1.so

ld-linux-x86-64.so.2

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix store:
/nix/store

8asg5kbfsbd3...-libX11-1.3.4

lib

libX11.so.6

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix store:
/nix/store

8asg5kbfsbd3...-libX11-1.3.4

lib

libX11.so.6

52abfi7a0nl8...-mesa-7.8.2

lib

libGL.so.1.2

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix store:
/nix/store

8asg5kbfsbd3...-libX11-1.3.4

lib

libX11.so.6

52abfi7a0nl8...-mesa-7.8.2

lib

libGL.so.1.2
i5lxg4bl2zsa...-SDL-1.2.14

lib

libSDL-1.2.so.0.11.3

Nix

NixOS is based on Nix
Nix is a purely functional
package manager Make
Nix expression ≈ Makefile
Nix expressions evaluate to
dependency graph of build
actions (like a Makefile)
Packages are stored in
isolation in the Nix store

I Immutable
I Unique file names

Each build action in the
graph produces a path in the
Nix store

Dependency graph:

libX11 quake3sdl

mesa

Nix store:
/nix/store

8asg5kbfsbd3...-libX11-1.3.4

lib

libX11.so.6

52abfi7a0nl8...-mesa-7.8.2

lib

libGL.so.1.2
i5lxg4bl2zsa...-SDL-1.2.14

lib

libSDL-1.2.so.0.11.3
bqd0my8b4f65...-quake3

bin
quake3

Building NixOS VMs

NixOS = big
dependency graph:
packages, kernel, boot
scripts, system services,
static config files...

NixOS VM: one extra
step to build a script
that runs QEMU/KVM

xorg.conf

xserver

ssh_config

etc

profile.sh

sshd_config

sshd

ntp.conf

ntpdhardwareScan

upstartJobs

dhclientdhcpdudev mingettystage1Init

initrd

stage2Init

system

activateConfiguration

modulesTree

modulesClosure

systemPath

kernel

nvidiaDriveriwlwifi

klibce2fsprogs

modprobe ntp dhcpopenssh

xauth

libX11

xorgserver

bashiputils pwdutils perl

upstart

grubMenuBuilder

${pkgs.qemu_kvm}/bin/qemu-system-x86_64 -smb /

-kernel ${config.boot.kernelPackages.kernel}

-initrd ${config.system.build.initialRamdisk}

-append "init=..."

Building NixOS VMs

NixOS = big
dependency graph:
packages, kernel, boot
scripts, system services,
static config files...
NixOS VM: one extra
step to build a script
that runs QEMU/KVM

xorg.conf

xserver

ssh_config

etc

profile.sh

sshd_config

sshd

ntp.conf

ntpdhardwareScan

upstartJobs

dhclientdhcpdudev mingettystage1Init

initrd

stage2Init

system

activateConfiguration

vmScript

modulesTree

modulesClosure

systemPath

kernel

nvidiaDriveriwlwifi

klibce2fsprogs

modprobe ntp dhcpopenssh

xauth

libX11

xorgserver

bashiputils pwdutils perl

upstart

grubMenuBuilder

${pkgs.qemu_kvm}/bin/qemu-system-x86_64 -smb /

-kernel ${config.boot.kernelPackages.kernel}

-initrd ${config.system.build.initialRamdisk}

-append "init=..."

Building NixOS VMs

NixOS = big
dependency graph:
packages, kernel, boot
scripts, system services,
static config files...
NixOS VM: one extra
step to build a script
that runs QEMU/KVM

xorg.conf

xserver

ssh_config

etc

profile.sh

sshd_config

sshd

ntp.conf

ntpdhardwareScan

upstartJobs

dhclientdhcpdudev mingettystage1Init

initrd

stage2Init

system

activateConfiguration

vmScript

modulesTree

modulesClosure

systemPath

kernel

nvidiaDriveriwlwifi

klibce2fsprogs

modprobe ntp dhcpopenssh

xauth

libX11

xorgserver

bashiputils pwdutils perl

upstart

grubMenuBuilder

${pkgs.qemu_kvm}/bin/qemu-system-x86_64 -smb /

-kernel ${config.boot.kernelPackages.kernel}

-initrd ${config.system.build.initialRamdisk}

-append "init=..."

Efficient VM instantiation

We don’t generate disk images

Rather, the VM mounts the Nix store of the host (using SMB/CIFS)
Thanks to the purely functional nature of the Nix store:
VMs don’t interfere with each other

I Not possible if we were using (say)
/bin and /etc of an Ubuntu system

Efficient VM instantiation

We don’t generate disk images
Rather, the VM mounts the Nix store of the host (using SMB/CIFS)

Thanks to the purely functional nature of the Nix store:
VMs don’t interfere with each other

I Not possible if we were using (say)
/bin and /etc of an Ubuntu system

Efficient VM instantiation

We don’t generate disk images
Rather, the VM mounts the Nix store of the host (using SMB/CIFS)
Thanks to the purely functional nature of the Nix store:
VMs don’t interfere with each other

I Not possible if we were using (say)
/bin and /etc of an Ubuntu system

Experience

NixOS continuous builds

GNU Project integration testing
I E.g. GNU C Library (Glibc)

Other free software projects

Conclusion

Contributions
Concise specifications of machines and networks needed for
system tests

I Thanks to the declarative model of NixOS
Efficient method to instantiate those specifications

I Thanks to the purely functional nature of Nix

Bottom line: makes it easy to write automated tests that would
otherwise be infeasible

More information
Web: http://nixos.org/
E-mail: e.dolstra@tudelft.nl, s.vanderburg@tudelft.nl1

http://nixos.org/

Bonus slides

Distributed code coverage

Example of the advantage of a functional build specification
language
Can easily adapt the dependency graph to apply coverage
instrumentation
Gather coverage data from all VMs and combine it into one report
Useful because different code paths may be exercised on the
client and the server

Why NixOS?

Why not just generate (say) Ubuntu 10.10 disk images?
We have a function for that, but...

It’s slow and expensive to generate full disk images.
Not declarative; inconvient for specifying tests.

Note: host system can be any Linux distribution.

Interactive testing

We can also run the VMs from the declarative model interactively.

Evaluation

Test # VMs Duration (s) Memory (MiB)
empty 1 45.9 166
openssh 1 53.7 267
kde4 1 140.4 433
subversion 2 104.8 329
trac 4 159.4 756
proxy 4 65.4 477
quake3 3 80.6 528
transmission 4 89.5 457
installation 2 302.7 751
nfs 3 259.7 358

Table: Test resource consumption

	Motivation: Regression testing
	Motivation: testing at the system level
	Why are system tests hard to automate?
	Example: Quake 3
	Example: Transmission test
	Goal
	
	NixOS
	Quake 3 testing: network specification
	Quake 3 testing: test script
	Running the test
	Network topologies: Transmission test
	
	Nix
	Building NixOS VMs
	Efficient VM instantiation
	Experience
	Conclusion
	
	Distributed code coverage
	Why NixOS?
	Interactive testing
	Evaluation

