
Secure Sharing Between Untrusted Users in a
Transparent Source/Binary Deployment Model

STC / ASE 2005

Eelco Dolstra
eelco@cs.uu.nl

Universiteit Utrecht, Faculty of Science,
Department of Information and Computing Sciences

October 20, 2005

Goal

Create a package management system that allows any user to
install software.

Package management models

Traditional Unix package managers

I RPM, Apt, FreeBSD Ports, Gentoo Portage, ...

I Manage dependencies

I Only the administrator can install packages

I ... since they go into global directories like /usr/bin

I Packages are shared between users

Monolithic packaging systems

I Windows, Mac OS X

I Everybody can install packages

I But there is no sharing (unless explicitly arranged)

Package management models

Traditional Unix package managers

I RPM, Apt, FreeBSD Ports, Gentoo Portage, ...

I Manage dependencies

I Only the administrator can install packages

I ... since they go into global directories like /usr/bin

I Packages are shared between users

Monolithic packaging systems

I Windows, Mac OS X

I Everybody can install packages

I But there is no sharing (unless explicitly arranged)

Sharing

Why do we want sharing?

I More efficient use of resources

I Especially due to common dependencies: Θ(N + M) instead
of Θ(N ×M)

The problem

I Users may be mutually untrusted

I If Alice installs Firefox, then Bob may not want to use it; it
may contain a Trojan horse

Typical untrusted environments

I Student login servers

I Hosting providers

I Computational grids

Sharing

Why do we want sharing?

I More efficient use of resources

I Especially due to common dependencies: Θ(N + M) instead
of Θ(N ×M)

The problem

I Users may be mutually untrusted

I If Alice installs Firefox, then Bob may not want to use it; it
may contain a Trojan horse

Typical untrusted environments

I Student login servers

I Hosting providers

I Computational grids

Sharing

Why do we want sharing?

I More efficient use of resources

I Especially due to common dependencies: Θ(N + M) instead
of Θ(N ×M)

The problem

I Users may be mutually untrusted

I If Alice installs Firefox, then Bob may not want to use it; it
may contain a Trojan horse

Typical untrusted environments

I Student login servers

I Hosting providers

I Computational grids

This paper

This paper extends the Nix deployment system to support secure
sharing between untrusted users.

The Nix Deployment System

I Central idea: store all components in isolation.

I Unique paths:

/nix/store/jjp9pirx8b3nqs9k...-firefox

which is an SHA-256 hash of all inputs used to build the
component:

I Sources
I Libraries
I Compilers
I Build scripts
I Build parameters
I System type
I . . .

I Prevent undeclared build time dependencies.

I Scan for runtime dependencies.

I Deploy only closures under the depends-on relation.

Nix store

/nix/store

bd6593219f8dcb63...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

ce2d7d2a41456bab...-wxGTK-2.4.2

libwx_gtk2-2.4.so

e889db0595672287...-wxPython-2.4.2.4

lib

9ed8c4231bfde4af...-bittorrent-3.4.2

btdownloadgui.py

bin

(lots of Python bindings)

300ccc1a41af3abc...-gtk+-2.4.13

lib

libgtk-x11-2.0.so.0

f51ec7d5663c735e-zapping-0.7.3

zapping

bin

Nix store

/nix/store

bd6593219f8dcb63...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

ce2d7d2a41456bab...-wxGTK-2.4.2

libwx_gtk2-2.4.so

e889db0595672287...-wxPython-2.4.2.4

lib

9ed8c4231bfde4af...-bittorrent-3.4.2

btdownloadgui.py

bin

(lots of Python bindings)

300ccc1a41af3abc...-gtk+-2.4.13

lib

libgtk-x11-2.0.so.0

f51ec7d5663c735e-zapping-0.7.3

zapping

bin

Unique paths for
different versions

Nix expressions

firefox.nix

derivation {
name = "firefox-1.0.7";
builder = ./builder.sh;
src = fetchurl {
url = http://.../firefox-1.0.7-source.tar.bz2;
md5 = "5704a8c36de84b408e069afb0c5bc1df";

};
pkgconfig = derivation { ... };
gtk = derivation { ... };

}

Nix expressions

firefox.nix

derivation {
name = "firefox-1.0.7";
builder = ./builder.sh;
src = fetchurl {
url = http://.../firefox-1.0.7-source.tar.bz2;
md5 = "5704a8c36de84b408e069afb0c5bc1df";

};
pkgconfig = derivation { ... };
gtk = derivation { ... };

}

Build attributes

Nix expressions

builder.sh

source $stdenv/setup

PATH=$pkgconfig/bin:$PATH

tar xvfj $src
cd firefox-*
./configure --prefix=$out --with-gtk=$gtk
make
make install

Nix expressions

builder.sh

source $stdenv/setup

PATH=$pkgconfig/bin:$PATH

tar xvfj $src
cd firefox-*
./configure --prefix=$out --with-gtk=$gtk
make
make install

Environment variables pass lo-
cations of dependencies, e.g.
/nix/store/0z017z...-pkgconfig

Nix expressions

builder.sh

source $stdenv/setup

PATH=$pkgconfig/bin:$PATH

tar xvfj $src
cd firefox-*
./configure --prefix=$out --with-gtk=$gtk
make
make install

Holds the component’s
path in the Nix store, e.g.
/nix/store/jjp9pi...-firefox

User operations

I To build and install Firefox:

$ nix-env -f firefox.nix -i firefox

I The path of Firefox (e.g., /nix/store/jjp9pi...-firefox) is
added to the user’s PATH environment variable.

User operations

I To build and install Firefox:

$ nix-env -f firefox.nix -i firefox

I The path of Firefox (e.g., /nix/store/jjp9pi...-firefox) is
added to the user’s PATH environment variable.

Transparent source/binary deployment

I Nix expressions give a source deployment model.

I We get binary deployment by sharing pre-built components.

I On the producer side:

$ nix-push $(nix-instantiate firefox.nix) \
http://server/cache

I On the client side:

$ nix-pull http://server/cache
$ nix-env -f firefox.nix -i firefox

I nix-pull registers substitutes:
“if I need to build path /nix/store/jjp9pi...-firefox,
I can download and unpack
http://example.org/jjp9pi...-firefox.nar.bz2 instead”

Transparent source/binary deployment

I Nix expressions give a source deployment model.

I We get binary deployment by sharing pre-built components.

I On the producer side:

$ nix-push $(nix-instantiate firefox.nix) \
http://server/cache

I On the client side:

$ nix-pull http://server/cache
$ nix-env -f firefox.nix -i firefox

I nix-pull registers substitutes:
“if I need to build path /nix/store/jjp9pi...-firefox,
I can download and unpack
http://example.org/jjp9pi...-firefox.nar.bz2 instead”

Transparent source/binary deployment

I Nix expressions give a source deployment model.

I We get binary deployment by sharing pre-built components.

I On the producer side:

$ nix-push $(nix-instantiate firefox.nix) \
http://server/cache

I On the client side:

$ nix-pull http://server/cache
$ nix-env -f firefox.nix -i firefox

I nix-pull registers substitutes:
“if I need to build path /nix/store/jjp9pi...-firefox,
I can download and unpack
http://example.org/jjp9pi...-firefox.nar.bz2 instead”

Transparent source/binary deployment

I Nix expressions give a source deployment model.

I We get binary deployment by sharing pre-built components.

I On the producer side:

$ nix-push $(nix-instantiate firefox.nix) \
http://server/cache

I On the client side:

$ nix-pull http://server/cache
$ nix-env -f firefox.nix -i firefox

I nix-pull registers substitutes:
“if I need to build path /nix/store/jjp9pi...-firefox,
I can download and unpack
http://example.org/jjp9pi...-firefox.nar.bz2 instead”

Sharing in Nix

Goal

Allow untrusted users to run Nix commands, e.g. installation —
with sharing

I Users do not have direct write permission to the store
I Build/installation actions are performed by a system user on

behalf of users
I I.e., nix-env is a setuid program or talks to a daemon

I Intended security property: if a Nix expression is trusted, then
so is the binary installed by nix-env -i

Sharing in Nix

Goal

Allow untrusted users to run Nix commands, e.g. installation —
with sharing

I Users do not have direct write permission to the store
I Build/installation actions are performed by a system user on

behalf of users
I I.e., nix-env is a setuid program or talks to a daemon

I Intended security property: if a Nix expression is trusted, then
so is the binary installed by nix-env -i

Sharing in Nix: Example

Nix store

/nix/store
...

Alice

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Sharing in Nix: Example

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Sharing in Nix: Example

Bob

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Already present!

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Sharing in Nix: Example

Bob

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Already present!

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Sharing in Nix: Example

Carol

I Gets a different firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/x64bxp...-firefox
Builds it

Bob

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Already present!

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Sharing in Nix: Example

Carol

I Gets a different firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/x64bxp...-firefox
Builds it

Bob

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Already present!

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

x64bxp...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Attack method: interfere with local builds

Nix store

/nix/store
...

Alice

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Attack method: interfere with local builds

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Attack method: interfere with local builds

Bob

I Writes evil.nix

I Runs nix-env -i evil
Computes path:
/nix/store/01qr9w...-evil

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Attack method: interfere with local builds

Bob

I Writes evil.nix

I Runs nix-env -i evil
Computes path:
/nix/store/01qr9w...-evil

Builder of evil.nix

#! /bin/sh
cp trojan-horse
/nix/store/jjp9pi...-firefox/bin/firefox

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Attack method: interfere with local builds

Bob

I Writes evil.nix

I Runs nix-env -i evil
Computes path:
/nix/store/01qr9w...-evil
Builds it

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

01qr9w...-evil
...

Alice

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Attack method: interfere with local builds

Bob

I Writes evil.nix

I Runs nix-env -i evil
Computes path:
/nix/store/01qr9w...-evil
Builds it

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

01qr9w...-evil
...

Alice

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Builds it

Solution

Isolate builders

I Run each build under a unique user ID (uid)

I I.e., maintain a pool of build users:
nix-build-1, nix-build-2, ...

I No two uids are used simultaneously
I Kill all processes running under a uid before using that uid

Attack method: register fake substitutes

Nix store

/nix/store
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Fake substitute is downloaded

Attack method: register fake substitutes

http://evil.org/

Contains Trojan horse substitute
jjp9pi...-firefox.nar.bz2.

Nix store

/nix/store
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Fake substitute is downloaded

Attack method: register fake substitutes

http://evil.org/

Contains Trojan horse substitute
jjp9pi...-firefox.nar.bz2.

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Fake substitute is downloaded

Attack method: register fake substitutes

Bob

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Already present!

I Runs Firefox — 0wned!

http://evil.org/

Contains Trojan horse substitute
jjp9pi...-firefox.nar.bz2.

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Fake substitute is downloaded

Attack method: register fake substitutes

Bob

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Already present!

I Runs Firefox — 0wned!

http://evil.org/

Contains Trojan horse substitute
jjp9pi...-firefox.nar.bz2.

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Fake substitute is downloaded

Attack method: register fake substitutes

Bob

I Gets firefox.nix

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Already present!

I Runs Firefox — 0wned!

http://evil.org/

Contains Trojan horse substitute
jjp9pi...-firefox.nar.bz2.

Nix store

/nix/store
jjp9pi...-firefox

bin
firefox

lib
libxpcom.so

libmozz.so
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Fake substitute is downloaded

Fake substitutes

The problem

I We must trust that the substitute (binary) corresponds to the
derivation (source) it claims to have been built from.

I The output path of a derivation (like
/nix/store/jjp9pi...-firefox) is computed in advance.

I There can be only one /nix/store/jjp9pi...-firefox in the file
system at any given time.

I Extensional model: all contents are assumed to be
interchangeable.

I ... but they are not due to malicious substitutes.

I Thus the trust relation must be established globally, for all
users.

Solution: A content-addressable Nix store

I Content-addressibility: the contents of an component in the
store determine its file name

I Example:
I If the contents of a component have hash

j153hbg6n21c...
I Then it will be stored in

/nix/store/j153hbg6n21c...

I Result: if two components are equal, they are stored only once

I Intensional model: the hash in a path relates to the
extensional behaviour of a component

I This model makes no assumptions that might not hold:
content-addressability is a verifiable security invariant

Building in the content-addressable Nix store

Problem

Component store paths are no longer known in advance. But we
need an output path!

Solution

I Use a temporary path with a random hash component, e.g.
$out = /nix/store/0f9hrdwh3nd3...-firefox

I Run the builder

I Compute the hash H over the output, e.g
H = j153hbg6n21c...

I Rename the temporary path to /nix/store/H-name, e.g.
/nix/store/j153hbg6n21c...-firefox

Self-references

Problem

Components can contain references to their own path.

Example: /nix/store/0f9hrdwh3nd3...-firefox/bin/firefox

#! /bin/sh
...
moz_libdir=/nix/store/0f9hrdwh3nd3...-firefox/lib/...
...
dist_bin="$moz_libdir"
...
"$dist_bin/run-mozilla.sh" $script_args

"$dist_bin/$MOZILLA_BIN" "$@"

Self-references (cont’d)

/nix/store/0f9hrdwh3nd3...-firefox/bin/firefox

...

0a 6d 6f 7a 5f 6c 69 62 64 69 72 3d 2f 6e 69 78 |.moz_libdir=/nix|

2f 73 74 6f 72 65 2f 30 66 39 68 72 64 77 68 33 |/store/0f9hrdwh3|

6e 64 33 6d 7a 35 63 71 63 6e 63 6c 79 35 62 77 |nd3mz5cqcncly5bw|

39 32 35 79 68 35 36 2d 66 69 72 65 66 6f 78 2f |925yh56-firefox/|

6c 69 62 2f 66 69 72 65 66 6f 78 2d 31 2e 34 2e |lib/firefox-1.4.|

31 0a 4d 52 45 5f 48 4f 4d 45 3d 2f 6e 69 78 2f |1.MRE_HOME=/nix/|

73 74 6f 72 65 2f 30 66 39 68 72 64 77 68 33 6e |store/0f9hrdwh3n|

64 33 6d 7a 35 63 71 63 6e 63 6c 79 35 62 77 39 |d3mz5cqcncly5bw9|

...

Solution

I Compute hashes modulo self-references:
when computing the final hash, replace every occurence of the
temporary hash by zeroes

I Rewrite occurences of the temporary hash to the final hash

I Does this work? Yes!

Self-references (cont’d)

/nix/store/0f9hrdwh3nd3...-firefox/bin/firefox

...

0a 6d 6f 7a 5f 6c 69 62 64 69 72 3d 2f 6e 69 78 |.moz_libdir=/nix|

2f 73 74 6f 72 65 2f 00 00 00 00 00 00 00 00 00 |/store/000000000|

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |0000000000000000|

00 00 00 00 00 00 00 2d 66 69 72 65 66 6f 78 2f |0000000-firefox/|

6c 69 62 2f 66 69 72 65 66 6f 78 2d 31 2e 34 2e |lib/firefox-1.4.|

31 0a 4d 52 45 5f 48 4f 4d 45 3d 2f 6e 69 78 2f |1.MRE_HOME=/nix/|

73 74 6f 72 65 2f 30 66 39 68 72 64 77 68 33 6e |store/0f9hrdwh3n|

64 33 6d 7a 35 63 71 63 6e 63 6c 79 35 62 77 39 |d3mz5cqcncly5bw9|

...

Solution

I Compute hashes modulo self-references:
when computing the final hash, replace every occurence of the
temporary hash by zeroes

I Rewrite occurences of the temporary hash to the final hash

I Does this work? Yes!

Self-references (cont’d)

/nix/store/0f9hrdwh3nd3...-firefox/bin/firefox

...

0a 6d 6f 7a 5f 6c 69 62 64 69 72 3d 2f 6e 69 78 |.moz_libdir=/nix|

2f 73 74 6f 72 65 2f 6a 31 35 33 68 62 67 36 6e |/store/j153hbg6n|

32 31 63 62 33 79 6d 79 6b 62 79 64 70 78 36 6b |21cb3ymykbydpx6k|

32 63 39 64 78 70 34 2d 66 69 72 65 66 6f 78 2f |2c9dxp4-firefox/|

6c 69 62 2f 66 69 72 65 66 6f 78 2d 31 2e 34 2e |lib/firefox-1.4.|

31 0a 4d 52 45 5f 48 4f 4d 45 3d 2f 6e 69 78 2f |1.MRE_HOME=/nix/|

73 74 6f 72 65 2f 30 66 39 68 72 64 77 68 33 6e |store/0f9hrdwh3n|

64 33 6d 7a 35 63 71 63 6e 63 6c 79 35 62 77 39 |d3mz5cqcncly5bw9|

...

Solution

I Compute hashes modulo self-references:
when computing the final hash, replace every occurence of the
temporary hash by zeroes

I Rewrite occurences of the temporary hash to the final hash

I Does this work? Yes!

Self-references (cont’d)

/nix/store/0f9hrdwh3nd3...-firefox/bin/firefox

...

0a 6d 6f 7a 5f 6c 69 62 64 69 72 3d 2f 6e 69 78 |.moz_libdir=/nix|

2f 73 74 6f 72 65 2f 6a 31 35 33 68 62 67 36 6e |/store/j153hbg6n|

32 31 63 62 33 79 6d 79 6b 62 79 64 70 78 36 6b |21cb3ymykbydpx6k|

32 63 39 64 78 70 34 2d 66 69 72 65 66 6f 78 2f |2c9dxp4-firefox/|

6c 69 62 2f 66 69 72 65 66 6f 78 2d 31 2e 34 2e |lib/firefox-1.4.|

31 0a 4d 52 45 5f 48 4f 4d 45 3d 2f 6e 69 78 2f |1.MRE_HOME=/nix/|

73 74 6f 72 65 2f 30 66 39 68 72 64 77 68 33 6e |store/0f9hrdwh3n|

64 33 6d 7a 35 63 71 63 6e 63 6c 79 35 62 77 39 |d3mz5cqcncly5bw9|

...

Solution

I Compute hashes modulo self-references:
when computing the final hash, replace every occurence of the
temporary hash by zeroes

I Rewrite occurences of the temporary hash to the final hash

I Does this work? Yes!

So how does this help?

I A single derivation can now have different outputs.

I In particular substitutes can now be user-specific.

Example

Nix store

/nix/store
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/78k8w842kl8p...-firefox
Fake substitute is downloaded

Example

http://evil.org/

Contains Trojan horse substitute
78k8w842kl8p...-firefox.nar.bz2.

Nix store

/nix/store
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/78k8w842kl8p...-firefox
Fake substitute is downloaded

Example

http://evil.org/

Contains Trojan horse substitute
78k8w842kl8p...-firefox.nar.bz2.

Nix store

/nix/store
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/78k8w842kl8p...-firefox
Fake substitute is downloaded

Example

http://evil.org/

Contains Trojan horse substitute
78k8w842kl8p...-firefox.nar.bz2.

Nix store

/nix/store
78k8w842kl8p...-firefox

bin
firefox

lib
libmozz.so
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/78k8w842kl8p...-firefox
Fake substitute is downloaded

Example

Bob

I Gets firefox.nix

I Pulls from good.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/j153hbg6n21c...-firefox
Good substitute is downloaded

http://evil.org/

Contains Trojan horse substitute
78k8w842kl8p...-firefox.nar.bz2.

Nix store

/nix/store
78k8w842kl8p...-firefox

bin
firefox

lib
libmozz.so
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/78k8w842kl8p...-firefox
Fake substitute is downloaded

Example

http://good.org/

Contains bona fide substitute
j153hbg6n21c...-firefox.nar.bz2.

Bob

I Gets firefox.nix

I Pulls from good.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/j153hbg6n21c...-firefox
Good substitute is downloaded

http://evil.org/

Contains Trojan horse substitute
78k8w842kl8p...-firefox.nar.bz2.

Nix store

/nix/store
78k8w842kl8p...-firefox

bin
firefox

lib
libmozz.so
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/78k8w842kl8p...-firefox
Fake substitute is downloaded

Example

http://good.org/

Contains bona fide substitute
j153hbg6n21c...-firefox.nar.bz2.

Bob

I Gets firefox.nix

I Pulls from good.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/j153hbg6n21c...-firefox
Good substitute is downloaded

http://evil.org/

Contains Trojan horse substitute
78k8w842kl8p...-firefox.nar.bz2.

Nix store

/nix/store
78k8w842kl8p...-firefox

bin
firefox

lib
libmozz.so
...

j153hbg6n21c...-firefox

bin
firefox

lib
libmozz.so
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/78k8w842kl8p...-firefox
Fake substitute is downloaded

Implementation aspect: Equivalence classes

I How do we know which substitute to use for firefox.nix?
I By computing the output equivalence class: a cryptographic

hash of derivation attributes
I This is how the component’s path was computed in the

extensional model

I Equivalence class + username is the key of the substitute
mapping

Example

I Equivalence class for firefox.nix is
/nix/store/jjp9pi...-firefox

I substitute[(/nix/store/jjp9pi...-firefox, alice)] =
(/nix/store/78k8w842kl8p...-firefox, ...url...)

substitute[(/nix/store/jjp9pi...-firefox, bob)] =
(/nix/store/j153hbg6n21c...-firefox, ...url...)

Implementation aspect: Equivalence classes

I How do we know which substitute to use for firefox.nix?
I By computing the output equivalence class: a cryptographic

hash of derivation attributes
I This is how the component’s path was computed in the

extensional model

I Equivalence class + username is the key of the substitute
mapping

Example

I Equivalence class for firefox.nix is
/nix/store/jjp9pi...-firefox

I substitute[(/nix/store/jjp9pi...-firefox, alice)] =
(/nix/store/78k8w842kl8p...-firefox, ...url...)

substitute[(/nix/store/jjp9pi...-firefox, bob)] =
(/nix/store/j153hbg6n21c...-firefox, ...url...)

Equivalence class collisions

Problem

When building, the inputs can contain multiple paths from the
same equivalence class.

Equivalence class glibc

glibc
A

pkgconfig
A

gtk
A

glibc
B

libIDLB

firefox

Equivalence class collisions (cont’d)

Solution

Rewrite one path from each equivalence class, then rewrite
references.

Equivalence class glibc

glibc
A

pkgconfig
A

gtk
A

libIDLB′

glibc
B

libIDLB

firefox

Conclusions

I Main contribution: a package manage system that allows any
user to install software, with secure sharing between untrusted
users

I Content-addressable component stores allow binary
components to be shared safely

I Hash rewriting is required to support self-referential
components

I It is possible to share locally built components safely

I Transparent source/binary deployment can be done safely and
selectively between mutually trusted users

	Goal
	Package management models
	Sharing
	This paper
	The Nix Deployment System
	Nix store
	Nix expressions
	Nix expressions

	User operations
	Transparent source/binary deployment
	Sharing in Nix
	Sharing in Nix: Example

	Attack method: interfere with local builds
	Solution
	Attack method: register fake substitutes
	Fake substitutes
	Solution: A content-addressable Nix store
	Building in the content-addressable Nix store
	Self-references
	Self-references (cont'd)

	So how does this help?
	Example
	Implementation aspect: Equivalence classes
	Equivalence class collisions
	Equivalence class collisions (cont'd)

	Conclusions

