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Goal

Create a package management system that allows any user to
install software.



Package management models

Traditional Unix package managers

I RPM, Apt, FreeBSD Ports, Gentoo Portage, ...

I Manage dependencies

I Only the administrator can install packages

I ... since they go into global directories like /usr/bin

I Packages are shared between users

Monolithic packaging systems

I Windows, Mac OS X

I Everybody can install packages

I But there is no sharing (unless explicitly arranged)
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Sharing

Why do we want sharing?

I More efficient use of resources

I Especially due to common dependencies: Θ(N + M) instead
of Θ(N ×M)

The problem

I Users may be mutually untrusted

I If Alice installs Firefox, then Bob may not want to use it; it
may contain a Trojan horse

Typical untrusted environments

I Student login servers

I Hosting providers

I Computational grids
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This paper

This paper extends the Nix deployment system to support secure
sharing between untrusted users.



The Nix Deployment System

I Central idea: store all components in isolation.

I Unique paths:

/nix/store/jjp9pirx8b3nqs9k...-firefox

which is an SHA-256 hash of all inputs used to build the
component:

I Sources
I Libraries
I Compilers
I Build scripts
I Build parameters
I System type
I . . .

I Prevent undeclared build time dependencies.

I Scan for runtime dependencies.

I Deploy only closures under the depends-on relation.



Nix store

/nix/store

bd6593219f8dcb63...-gtk+-2.2.4

lib

libgtk-x11-2.0.so.0

ce2d7d2a41456bab...-wxGTK-2.4.2

libwx_gtk2-2.4.so

e889db0595672287...-wxPython-2.4.2.4

lib

9ed8c4231bfde4af...-bittorrent-3.4.2

btdownloadgui.py

bin

(lots of Python bindings)

300ccc1a41af3abc...-gtk+-2.4.13

lib

libgtk-x11-2.0.so.0

f51ec7d5663c735e-zapping-0.7.3

zapping

bin
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Nix expressions

firefox.nix

derivation {
name = "firefox-1.0.7";
builder = ./builder.sh;
src = fetchurl {
url = http://.../firefox-1.0.7-source.tar.bz2;
md5 = "5704a8c36de84b408e069afb0c5bc1df";

};
pkgconfig = derivation { ... };
gtk = derivation { ... };

}
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Build attributes



Nix expressions

builder.sh

source $stdenv/setup

PATH=$pkgconfig/bin:$PATH

tar xvfj $src
cd firefox-*
./configure --prefix=$out --with-gtk=$gtk
make
make install
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Nix expressions

builder.sh

source $stdenv/setup

PATH=$pkgconfig/bin:$PATH

tar xvfj $src
cd firefox-*
./configure --prefix=$out --with-gtk=$gtk
make
make install

Holds the component’s
path in the Nix store, e.g.
/nix/store/jjp9pi...-firefox



User operations

I To build and install Firefox:

$ nix-env -f firefox.nix -i firefox

I The path of Firefox (e.g., /nix/store/jjp9pi...-firefox) is
added to the user’s PATH environment variable.



User operations

I To build and install Firefox:

$ nix-env -f firefox.nix -i firefox

I The path of Firefox (e.g., /nix/store/jjp9pi...-firefox) is
added to the user’s PATH environment variable.



Transparent source/binary deployment

I Nix expressions give a source deployment model.

I We get binary deployment by sharing pre-built components.

I On the producer side:

$ nix-push $(nix-instantiate firefox.nix) \
http://server/cache

I On the client side:

$ nix-pull http://server/cache
$ nix-env -f firefox.nix -i firefox

I nix-pull registers substitutes:
“if I need to build path /nix/store/jjp9pi...-firefox,
I can download and unpack
http://example.org/jjp9pi...-firefox.nar.bz2 instead”



Transparent source/binary deployment

I Nix expressions give a source deployment model.

I We get binary deployment by sharing pre-built components.

I On the producer side:

$ nix-push $(nix-instantiate firefox.nix) \
http://server/cache

I On the client side:

$ nix-pull http://server/cache
$ nix-env -f firefox.nix -i firefox

I nix-pull registers substitutes:
“if I need to build path /nix/store/jjp9pi...-firefox,
I can download and unpack
http://example.org/jjp9pi...-firefox.nar.bz2 instead”



Transparent source/binary deployment

I Nix expressions give a source deployment model.

I We get binary deployment by sharing pre-built components.

I On the producer side:

$ nix-push $(nix-instantiate firefox.nix) \
http://server/cache

I On the client side:

$ nix-pull http://server/cache
$ nix-env -f firefox.nix -i firefox

I nix-pull registers substitutes:
“if I need to build path /nix/store/jjp9pi...-firefox,
I can download and unpack
http://example.org/jjp9pi...-firefox.nar.bz2 instead”



Transparent source/binary deployment

I Nix expressions give a source deployment model.

I We get binary deployment by sharing pre-built components.

I On the producer side:

$ nix-push $(nix-instantiate firefox.nix) \
http://server/cache

I On the client side:

$ nix-pull http://server/cache
$ nix-env -f firefox.nix -i firefox

I nix-pull registers substitutes:
“if I need to build path /nix/store/jjp9pi...-firefox,
I can download and unpack
http://example.org/jjp9pi...-firefox.nar.bz2 instead”



Sharing in Nix

Goal

Allow untrusted users to run Nix commands, e.g. installation —
with sharing

I Users do not have direct write permission to the store
I Build/installation actions are performed by a system user on

behalf of users
I I.e., nix-env is a setuid program or talks to a daemon

I Intended security property: if a Nix expression is trusted, then
so is the binary installed by nix-env -i
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Sharing in Nix: Example

Nix store

/nix/store
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Alice

I Gets firefox.nix from trusted source

I Runs nix-env -i firefox
Computes path:
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Attack method: interfere with local builds
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Solution

Isolate builders

I Run each build under a unique user ID (uid)

I I.e., maintain a pool of build users:
nix-build-1, nix-build-2, ...

I No two uids are used simultaneously
I Kill all processes running under a uid before using that uid



Attack method: register fake substitutes

Nix store

/nix/store
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Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Computes path:
/nix/store/jjp9pi...-firefox
Fake substitute is downloaded
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Fake substitutes

The problem

I We must trust that the substitute (binary) corresponds to the
derivation (source) it claims to have been built from.

I The output path of a derivation (like
/nix/store/jjp9pi...-firefox) is computed in advance.

I There can be only one /nix/store/jjp9pi...-firefox in the file
system at any given time.

I Extensional model: all contents are assumed to be
interchangeable.

I ... but they are not due to malicious substitutes.

I Thus the trust relation must be established globally, for all
users.



Solution: A content-addressable Nix store

I Content-addressibility: the contents of an component in the
store determine its file name

I Example:
I If the contents of a component have hash

j153hbg6n21c...
I Then it will be stored in

/nix/store/j153hbg6n21c...

I Result: if two components are equal, they are stored only once

I Intensional model: the hash in a path relates to the
extensional behaviour of a component

I This model makes no assumptions that might not hold:
content-addressability is a verifiable security invariant



Building in the content-addressable Nix store

Problem

Component store paths are no longer known in advance. But we
need an output path!

Solution

I Use a temporary path with a random hash component, e.g.
$out = /nix/store/0f9hrdwh3nd3...-firefox

I Run the builder

I Compute the hash H over the output, e.g
H = j153hbg6n21c...

I Rename the temporary path to /nix/store/H-name, e.g.
/nix/store/j153hbg6n21c...-firefox



Self-references

Problem

Components can contain references to their own path.

Example: /nix/store/0f9hrdwh3nd3...-firefox/bin/firefox

#! /bin/sh
...
moz_libdir=/nix/store/0f9hrdwh3nd3...-firefox/lib/...
...
dist_bin="$moz_libdir"
...
"$dist_bin/run-mozilla.sh" $script_args

"$dist_bin/$MOZILLA_BIN" "$@"



Self-references (cont’d)

/nix/store/0f9hrdwh3nd3...-firefox/bin/firefox

...

0a 6d 6f 7a 5f 6c 69 62 64 69 72 3d 2f 6e 69 78 |.moz_libdir=/nix|

2f 73 74 6f 72 65 2f 30 66 39 68 72 64 77 68 33 |/store/0f9hrdwh3|

6e 64 33 6d 7a 35 63 71 63 6e 63 6c 79 35 62 77 |nd3mz5cqcncly5bw|

39 32 35 79 68 35 36 2d 66 69 72 65 66 6f 78 2f |925yh56-firefox/|

6c 69 62 2f 66 69 72 65 66 6f 78 2d 31 2e 34 2e |lib/firefox-1.4.|

31 0a 4d 52 45 5f 48 4f 4d 45 3d 2f 6e 69 78 2f |1.MRE_HOME=/nix/|

73 74 6f 72 65 2f 30 66 39 68 72 64 77 68 33 6e |store/0f9hrdwh3n|

64 33 6d 7a 35 63 71 63 6e 63 6c 79 35 62 77 39 |d3mz5cqcncly5bw9|

...

Solution

I Compute hashes modulo self-references:
when computing the final hash, replace every occurence of the
temporary hash by zeroes

I Rewrite occurences of the temporary hash to the final hash

I Does this work? Yes!
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So how does this help?

I A single derivation can now have different outputs.

I In particular substitutes can now be user-specific.



Example

Nix store

/nix/store
...

Alice

I Gets firefox.nix

I Pulls from evil.org

I Runs nix-env -i firefox
Selects substitute:
/nix/store/78k8w842kl8p...-firefox
Fake substitute is downloaded
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Example

Bob
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Implementation aspect: Equivalence classes

I How do we know which substitute to use for firefox.nix?
I By computing the output equivalence class: a cryptographic

hash of derivation attributes
I This is how the component’s path was computed in the

extensional model

I Equivalence class + username is the key of the substitute
mapping

Example

I Equivalence class for firefox.nix is
/nix/store/jjp9pi...-firefox

I substitute[(/nix/store/jjp9pi...-firefox, alice)] =
(/nix/store/78k8w842kl8p...-firefox, ...url...)

substitute[(/nix/store/jjp9pi...-firefox, bob)] =
(/nix/store/j153hbg6n21c...-firefox, ...url...)
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Equivalence class collisions

Problem

When building, the inputs can contain multiple paths from the
same equivalence class.

Equivalence class glibc

glibc
A

pkgconfig
A

gtk
A

glibc
B

libIDLB

firefox



Equivalence class collisions (cont’d)

Solution

Rewrite one path from each equivalence class, then rewrite
references.

Equivalence class glibc

glibc
A

pkgconfig
A

gtk
A

libIDLB′

glibc
B

libIDLB

firefox



Conclusions

I Main contribution: a package manage system that allows any
user to install software, with secure sharing between untrusted
users

I Content-addressable component stores allow binary
components to be shared safely

I Hash rewriting is required to support self-referential
components

I It is possible to share locally built components safely

I Transparent source/binary deployment can be done safely and
selectively between mutually trusted users
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